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A B S T R A C T

We compared the performance of Sentinel-2 and Landsat 8 data for forest variable prediction in the boreal forest
of Southern Finland. We defined twelve modelling setups to train multivariable prediction models with either
multilayer perceptron (MLP) or regression tree models with the brute force forward selection method. The
reference data consisted of 739 circular field plots that had been collected by the Finnish Forest Centre con-
currently with the Sentinel-2 and Landsat 8 acquisitions. The input data were divided into training, validation
and test sets of equal sizes for 100 iterations in each modelling setup. The predicted forest variables were stem
volume (V), stem diameter (D), tree height (H) and basal area (G), and their species-wise components for pine
(Pine), spruce (Spr) and broadleaved (BL) trees. We recorded the performance figures and the best predictive
image bands for each modelling setup.

The best average performance over the 100 modelling iterations was obtained using all Sentinel-2 bands. The
plot-level relative root mean square errors (RMSE%) of the field observed mean were 38.4% for average stem
diameter, 42.5% for stem basal area/ha, 30.4% for average tree height, and 59.3% for growing stock volume/ha
with variables including all tree species. The corresponding best figures with all Landsat 8 bands were RMSE
%=44.6%, 50.2%, 36.6% and 72.2%, respectively. The Sentinel-2 outperformed Landsat 8 also when using
near-equivalent image bands and Sentinel-2 data down-sampled to 30m pixel resolution. The relative systematic
error (bias%) did not show any significant differences between Sentinel-2 and Landsat 8 data: the average of the
absolute value of bias% was 0.8% for Sentinel-2 and 1.2% for Landsat 8. The best predictive Sentinel-2 image
band was the red-edge 1 (B05_RE1), when variable totals including all species were estimated. The short-wave
infrared bands (B11_SWIR1 & B12_SWIR2) and the visible green band (B03_Green) were also among the best
predictors. The median number of predictors in the best performing models was 4–6 for the Sentinel-2 and 4–5
for the Landsat 8 models, respectively.

We conclude that Sentinel-2 Multispectral Instrument (MSI) data can be recommended as the principal Earth
observation data source in forest resources assessment.

1. Introduction

Forests cover almost one third of the Earth's land surface (FAO,
2015) and they play a major role in global carbon and water cycles
(IPCC, 2006; UNFCCC, 2014; UNFCCC, 2016), but are also an important
source of raw material for industry, fuel and other ecosystem services
(Binder et al., 2017). The multiple functions of forests can lead to
conflicting requirements for their management, with e.g. sustainability
as the leading demand from environmental point of view. Reliable data
on forest resources is required to provide objective information for
sustainable forest management.

Forest inventory using traditional methods is slow and expensive.
Traditionally, inventory uses a statistical sample of field inventory plots

to provide statistical data on forest resources using unbiased proce-
dures. Such inventory is typically done for natural forest resources as-
sessment, but a full-scale inventory is available only in a fraction of
countries globally (FAO, 2000). The inventory is done by wall-to-wall
mapping for forest management purposes, and in some cases at a na-
tional level (Reese et al., 2003). Such inventory, when applicable for
forest management planning, does not necessarily fulfil requirements of
unbiased procedures because no statistical sampling is involved. Al-
ternatives, such as participatory sensing, can provide faster and cost-
effective collection of in-situ forest and biomass data (Molinier et al.,
2016), however not yet at a national scale with the desired density of
observations.

The forest variable gaining the most interest in the remote sensing
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research community in recent years has been the growing stock volume
(Chrysafis et al., 2017; Antropov et al., 2018; Lindberg and Hollaus,
2012). However, growing stock volume is not the only adequate vari-
able for estimation for forest management purposes, nor for fine re-
solution forest primary productivity modelling (Mäkelä et al., 2007;
Härkönen et al., 2011). A high number of variables have been estimated
in national forest inventories in Finland and Sweden, but much less has
been published for variables other than volume globally.

Satellite imagery has offered an information source for forest re-
sources information with satisfactory resolution since the Launch of
Landsat-1 in 1972, and in particular Landsat-4 with 30-meter spatial
resolution of the Thematic Mapper sensor in 1982. Today, long and
dense Landsat data time series are available worldwide, which enables
advanced land and forest cover monitoring (Cohen and Goward, 2017;
Wulder et al., 2012; Zhu and Woodcock, 2014; Griffiths et al., 2014).

The relative root mean square error of growing stock volume ob-
tained with medium resolution optical satellite data has varied de-
pending on the geographical area and the type of reference data that
have been used. Typical values for growing stock volume have been
48–56% in boreal forest (Hyyppä et al., 2000; Mäkelä and Pekkarinen,
2004; Tokola et al., 2007). In tropical forest with anthropogenic in-
fluence, a relative RMSE of 44.2% was achieved using regression ana-
lysis with ALOS AVNIR data (Häme et al., 2013).

Higher accuracies have been achieved with very high resolution
(VHR) optical data that enables extraction of information of forest
structure through textural features and stereo imaging (Persson, 2016).
The relative RMSE of the growing stock volume predictions has varied
from 31.5% (Peuhkurinen et al., 2008) to 37.4% (Astola et al., 2004) in
boreal forest with Ikonos-2 data of one-meter resolution. A combination
of optical data with data from other sources has resulted in even better
accuracies: Persson et al. (2013) reported stand-level relative RMSE's of
22.4%–29.2% for aboveground biomass using optical stereo imaging
with SPOT5 and ALOS PRISM with a combined digital terrain model
retrieved from laser scanning data.

Of other information sources, space-borne radar data has the benefit
of being almost independent of weather conditions. With L-band ima-
ging space-borne radar, the results for growing stock volume have been
similar to those with optical bands, with relative RMSE's being 44.2% at
sample plot level in managed tropical forest (Häme et al., 2013) and
43% at the stand level of several hectares in boreal forest (Antropov
et al., 2013). The potential of the higher frequency C-band has been low
in forest inventory. Santoro et al. (2011) obtained relative RMSE values
ranging from 47.7%–96.2% with 100m pixel size using C-band Envisat
ASAR in study areas in Russia and Sweden. Application of aerial LiDAR
data enables forest canopy height prediction with a stand level RMSE's
for stem volume of 13.7% (Persson and Fransson, 2017) and plot level
RMSE's of 21.3% (Varvia et al., 2017), 24.9%–34.9% (Kankare et al.,
2013) and 37.3%–41.9% (Lindberg and Hollaus, 2012). However, the
price, poorer availability and more complex processing decrease the
practical usefulness of VHR, radar and LiDAR data for operational ap-
plications and for wall-to-wall mapping of wide areas.

The European Copernicus1 program with its Sentinel satellites is an
operational environment monitoring system providing free satellite
data for decades to come. The main Copernicus instrument for forestry
purposes is the Sentinel-2 satellite series.2 Two satellites provide images
from 10- to 60-meter spatial resolution with 13 spectral bands and five-
day revisit frequency at the equator (Drusch et al., 2012). The opera-
tional nature of the Copernicus program facilitates the development of
sustainable services built on Sentinel-2 data. The Landsat program is
also operational, but the 16-day image acquisition frequency is much

lower than with Sentinel-2 (https://landsat.usgs.gov/landsat-8-l8-data-
users-handbook-section-2). All other publicly available data with ade-
quate resolution have been acquired with satellites from programs with
uncertain future continuation.

Trustworthy data service is of central importance for forest in-
dustries and administrations. The improved spatial resolution of the
multispectral data from 30m of Landsat to ten meters of Sentinel-2
make a big difference for the operational actors since this enables es-
timation of variables at the level of forest stands. Furthermore, the
operational organizations have changed their forest management sys-
tems with increased level of automation and decreased demand of
labor. Their geographic information systems can now utilize con-
tinuously updating information from space borne sensors. All these
developments are changing the landscape in operational forest man-
agement planning.

Only a few studies exist where the performance of Landsat 8 and
Sentinel-2 data has been addressed for the purpose of quantitative
monitoring of the environment so far. Mandanici and Bitelli (2016)
studied the correlation of Sentinel-2 and Landsat 8 data in six test areas
around the world. They reported good correlation of the near-equiva-
lent instrument channels enabling the combined use of the two in-
struments, as long as the differences in the radiometric characteristics
of the two sensors are taken into account in the target application.
Chrysafis et al. (2017) examined the relationships between growing
stock volume (GSV) and Sentinel-2 Multispectral Instrument and
Landsat 8 Operational Land Imager (OLI) imagery. Using random forest
(RF) regression models, they found Sentinel-2 to be slightly better for
GSV estimation. They also found the Sentinel-2 red-edge band B5 to be
significant in terms of correlation with forest parameter estimation.
Other studies for Sentinel-2 have been published for the retrieval of
forest canopy cover (CC), effective canopy cover (ECC), and leaf area
index (LAI) (Korhonen et al., 2017) for land cover/land use classifica-
tion (Topaloǧlu et al., 2016; Forkuor et al., 2017) and for crop and tree
species classification (Immitzer et al., 2016). Most of the studies com-
paring Sentinel-2 and Landsat 8 reported equal or better performance of
Sentinel-2-based models. The usefulness of Sentinel-2 red-edge band 1
was also highlighted.

The work for this study was a part of a research project jointly
funded by the Finnish Ministry of Agriculture and Forestry and VTT
Technical Research Centre of Finland (project OH300-S42100-03). The
motivation of the project was to utilize new data sources and methods
for future development of forest related products and services for forest
owner's and forest industry needs. The objective of the project was to
apply new sources of both remotely sensed and field measured data
(satellite data and harvester data) to forest variable prediction in boreal
forest (Finland) and to assess their added value for prediction perfor-
mance. The objective of this study was to compare the potential of the
two main medium resolution data sources, Landsat 8 and Sentinel-2, for
forest monitoring to understand their potential to provide information
for forest management. We included the main variables needed in forest
management and in fine-scale primary productivity estimation in our
comparison. The detailed objectives were

1) To compare the forest variable prediction performance of Landsat 8
and Sentinel-2 using all spectral bands of the instruments and near-
equivalent bands

2) To examine the significance of the better spatial resolution of
Sentinel-2

3) To examine the significance of Sentinel-2 red-edge bands (RE1, RE2
& RE3) on prediction performance

The predicted forest variables were stem volume (V), stem diameter
(D), tree height (H) and basal area (G). The species-wise components of
these variables for pine (Pine), spruce (Spr) and broadleaved (BL) trees
were also included. Two modelling methods, a multi-layer perceptron
(MLP) neural network (Rumelhart and McClelland, 1986) and

1 http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/
Overview3.
2 http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/

Sentinel-2/Introducing_Sentinel-2.

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

258

https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-2
https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-2
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Overview3
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2
http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2


regression tree (Breiman, 1998) were used for forest variable predic-
tion. Their results were compared to verify that the results were not
method-dependent. A set of 739 plots of field reference data were used
to train, validate and test the performance of the prediction models. The
test results were produced using the 10m and 20m resolution bands of
Sentinel-2 MSI (S2) and the bands 1–7 of Landsat 8 OLI (L8) imagery.

2. Materials

2.1. Test site

The study area was located in Southern Finland, centered at
60°35′07.2″N, 24°44′25.9″E and covered roughly an area of
100 km×100 km (Fig. 1). The test site is a typical Finnish managed
boreal forest landscape with some agricultural areas and small towns
and villages. The topography is relatively flat with only small changes
in elevation. The forest area is conifer-dominated by Norway spruce
(Picea abies (Karst.)) and Scots pine (Pinus sylvestris (L.)) as the major
species. The deciduous trees usually occur as mixed species, mainly
birches (Betula spp.). The regional proportions of the different species
are 48%, 28% and 23% of the mean growing stock volume, respectively
(Ylitalo, 2012). Classified by stand site class, the area consists of mainly

fertile forest types (Cajander, 1949).

2.2. Reference data

The test area was covered with forest field sample plots that had
been measured by the local Finnish Forest Center in the field. The
measured variables included stem volume, diameter at breast height,
tree height, basal area, age, stem number, and additional stand in-
formation like development class, dominant species, proportion of sawn
timber, regeneration situation, etc. These reference data had been col-
lected during the period from May 6th 2015 to Sep 23rd 2015. Three
different plot radii had been used: The plot radius was 9m in young and
advanced managed forests with a relatively high tree density, and
12.62m in forest with a low stem density but usually high volume due
to the mature development stage. In seedling stands the radius was
5.64m. Table 1 shows the mean and standard deviation of the main
variables for all plots, and for the field plot groups with different
dominating species.

2.3. Satellite data

Landsat 8 surface reflectance Level-2 data product of an image scene

Fig. 1. a) The test site location in Southern Finland, b) The Sentinel-2 (top) and Landsat 8 images used in the study shown as false color images (R=NIR, G= red,
B= green). The blue line shows the delineation of the test site image window, the reference data locations shown with green dots. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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acquired on 20.8.2015 was ordered and downloaded from the USGS
Earth Explorer data portal (https://earthexplorer.usgs.gov/). Sentinel-2
Top-Of-Atmosphere (TOA) Level-1C orthoimage product for a scene
acquired on 17.8.2015 was downloaded from the Copernicus Open
Access Hub https://scihub.copernicus.eu/dhus/#/home. The Sentinel-
2 Bottom-Of-Atmosphere (BOA) or surface reflectance image was
computed using the Dense Dark Vegetation (DDV) algorithm (Kaufman
and Sendra, 1988). A cloud mask was manually drawn for the L8 image
according to visual inspection. The S2 image was totally cloud-free. In
addition to the original pixel resolution image, the S2 image was down-
sampled to 30m resolution by nearest neighbor sampling, in order to
match the spatial resolution of L8 data. The input data set for the
analysis included the spectral signatures (BOA) extracted from the
pixels located at the reference data plot coordinates. Only target pixel
data was recorded, i.e. no spatial averaging of image data was per-
formed at this point. Fig. 1 shows the test site location and S2 and L8
satellite imagery with the extents of the study area and field sample plot
data overlaid.

3. Methods

3.1. Test setups

Twelve test setups (Table 2) were defined to investigate the factors
causing the presumed differences in the forest variable prediction per-
formance between Landsat 8 and Sentinel-2. They included the L8 data,
the S2 data in original pixel resolution and in down-sampled 30m re-
solution, and two modelling methods, MLP and regression tree. The
instrument bands were grouped into different channel combinations,
feature sets, to investigate the significance of the S2 red-edge bands and
pixel resolution for prediction accuracy.

• Instrument channel combinations
Two different instrument channel combinations were defined for L8

(feature sets A and B) and four for S2 (feature sets A–E) for testing. The

feature set A included all the available instrument channels,3 and fea-
ture set B the near-equivalent wavelength bands from both instruments.
As in Korhonen et al. (2017) the S2 band B8a_nNIR instead of B08_NIR
was used in feature set B as it corresponds better to L8 band 5 char-
acteristics in terms of bandwidth and pixel size. Three more feature sets
were defined for the S2 data. Feature set C included all S2 bands except
the red-edge bands (B05_RE1, B06_RE2 & B07_RE3), feature set D in-
cluded the S2 bands with 10m pixel resolution and feature set E the S2
bands with 20m pixel resolution. For the summary of the feature sets,
see Table 3.

• Sentinel-2 data re-sampled to 30m resolution

The modelling was repeated using S2 data resampled to 30m in
order to evaluate the significance of S2 better spatial resolution with
respect to L8. The S2 30m resolution was tested with two band com-
binations: including all S2 image bands (feature set A) and bands near-
equivalent with L8 (feature set B).

• Sentinel-2 data with either 10m or 20m bands only

The feature sets D and E were defined to test S2 model performance
using either only the 10m resolution, or the 20m resolution image
bands to investigate the significance of pixel resolution to prediction
accuracy.

• Sentinel-2 and Landsat 8 data combined

To compare the significance of S2 and L8 image bands as forest
variable model predictors, all bands (feature set A) from the two sa-
tellites were combined into a 17-element input vector for the modelling
process.

Table 1
Mean and standard deviation of main forest variables for all plots, and for field plots grouped according to dominating species.

Forest variable All plots Pine Spruce Broadleaved

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

Mean stem diameter (D [cm]) 16.6 10.1 17.9 8.2 18.1 11.3 11.3 7.9
Basal area (G [m2/ha]) 18.7 12.0 19.2 9.4 20.8 13.7 13.4 10.2
Mean tree height (H [m]) 14.3 7.4 14.4 5.7 15.2 8.5 11.9 6.7
Stem volume (V [m3/ha]) 159.8 140.0 150.0 97.1 193.6 167.1 101.1 110.0
Number of stems (N [stems/ha]) 2268 3082 1691 1962 2074 2886 3661 4370
Age (T [a]) 43.4 32.7 49.4 35.9 47.4 32.5 24.5 17.2
Nbr of plots: 739 252 336 151

Table 2
Definition of the different test setups.

Test setup Test setup description Feature set(s) (see Table 3) Sentinel-2 pixel resolution Modelling method

S2_All S2 data with all instrument bands A 10/20m MLP
L8_All L8 data with all instrument bands A 30m MLP
S2_Eqv S2 data with near-equivalent bands B 10/20m MLP
L8_Eqv L8 data with near-equivalent bands B 30m MLP
S2_wo_RE S2 data without the red-edge bands C 10/20m MLP
S2_10 S2 data with 10m bands only D 10m MLP
S2_20 S2 data with 20m bands only E 20m MLP
S2_30_All S2 data resampled to 30m, all bands A 30m MLP
S2_30_Eqv S2 data resampled to 30m, near-equivalent bands B 30m MLP
S2_L8_All All S2 and L8 bands combined A 10/20/30m MLP
S2_All_rTree S2 data with regression tree method A 10/20m Regression tree
L8_All_rTree S2 data with regression tree method A 30m Regression tree

3 All available instrument channels meaning the 10m & 20m bands of
Sentinel-2 MSI, and bands 1–7 of Landsat 8 OLI.
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• Two modelling methods
The two different modelling methods, MLP neural network and re-

gression tree, were used to verify that the results were not method-
dependent. For this it was considered adequate to repeat the tests with
feature set A only.

3.2. Forest variable modelling and feature selection

Artificial neural networks are a set of different methodologies in
mathematical problem solving. Typical uses for neural networks are
different pattern recognition tasks, or modelling of the complex map-
pings between inputs and outputs of some, usually non-linear, system
(Rumelhart and McClelland, 1986). Neural networks have proved to be
efficient in finding complex, often non-linear dependencies between
input and output data spaces. The major drawback of neural networks is
that they do not provide an explicit formulation of the model, unlike
physical-based models. The feed-forward MLP neural networks are
known for their ability to interpolate values in target variable space and
filter out noise to some extent (Helliwell et al., 1995). They are also
well-suited for predicting continuous variables and are simple to im-
plement.

During the last decade, the development of deep learning algo-
rithms along with the increase in computing performance have brought
neural networks again into the state-of-the art machine learning
methodologies (Hinton et al., 2006; Vincent and Larochelle, 2010).
However, for the comparison task of this study, the usage of deep
learning methods were not supposed to perform better with the fore-
seen test setup (this was also verified with rapid tests) and thus a MLP
network with one hidden layer was selected as the principal method for
the models.

Regression trees, together with classification trees, are nonlinear

predictive models commonly called decision trees (Breiman, 1998;
Rokach and Maimon, 2007). The advantages of decision trees are, e.g.,
that they are simple to interpret and understand, they are capable of
handling both categorical and continuous-valued data and they scale
well with large data sets. On the other hand, decision trees may not be
as accurate as other methods and they are prone to overfitting (James
et al., 2000).

An iteration wrapper (Kohavi and John, 1997) program was written
with Matlab for the modelling process, and applied for all the defined
test setups. A flow chart of the iterative process is shown in Fig. 2. The
input data set was split to training, validation and test sets by stratified
random sampling in the beginning of the modelling process. Total stem
volume was used as a stratification variable with five strata. The
wrapper program included a brute force forward selection scheme
(Blum and Langley, 1997; Reif and Shafait, 2014) to select the best
predictive features for the models. The method searched first the best
one-feature model for the target variable, and then added the next best
feature on the next feature selection loop. The model performance was
evaluated for all feature combinations of the set of already selected
features and the available unselected features. In this study, the max-
imum number of input features was seven for L8, and ten for S2,
numbers considered low enough to perform the exhaustive feature
search. The selection criterion Sj for the best feature set was calculated
for all the model input features j= i, …,N as:

= +
+S rmse abs bias

R
( % 10 ( % ))

(0.5 )j V V
V
2 (1)

c= argminj{Sj}, j= i, …,N

where

argminj=argument of the minimum: argminj{Sj}= {j|∧j, lϵ[i,N],

Table 3
Spectral bands of Sentinel-2 MSI and Landsat 8 OLI instruments and the definition of feature sets.

Sentinel-2 MSI

Band Description Wavelengths (nm) Resolution (m) Feature set

A B C D E

1 Coastal aerosol 433–453 60 – – – – –
2 Blue 458–523 10 A B C D
3 Green 543–578 10 A B C D
4 Red 650–680 10 A B C D
5 Vegetation Red Edge (RE1) 698–713 20 A E
6 Vegetation Red Edge (RE2) 733–748 20 A E
7 Vegetation Red Edge (RE3) 773–793 20 A E
8 Near-Infrared (NIR) 785–900 10 A C D
8a Narrow NIR (nNir) 855–875 20 A B C E
9 Water vapor 935–955 60 – – – – –
10 Shortwave infrared - Cirrus 1360–1390 60 – – – – –
11 Shortwave infrared (SWIR1) 1565–1655 20 A B C E
12 Shortwave infrared (SWIR2) 2100–2280 20 A B C E

Landsat 8 OLI

Band Description Wavelengths (nm) Resolution (m) Feature set

A B

1 Violet-deep Blue (V-D Blue) 433–453 30 A –
2 Blue 450–515 30 A B
3 Green 525–600 30 A B
4 Red 630–680 30 A B
5 Near-Infrared (NIR) 845–885 30 A B
8 Pan-Chromatic 500–680 30 – –
9 SWIR - Cirrus 1360–1390 30 – –
6 Shortwave infrared (SWIR1) 1560–1660 30 A B
7 Shortwave infrared (SWIR2) 2100–2300 30 A B
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j≠ l : Sl≥ Sj.}
RMSE%V=relative RMS-error on validation set
abs(BIAS%V)=absolute value of validation set relative BIAS (or
systematic error)
R2V=validation set coefficient of determination
i= loop counter i=1, …,N for the brute force forward feature se-
lection loop
j= loop counter for the still unselected features after feature se-
lection loop i (j= i, …,N)
c= index of the best feature on iteration i of the feature selection
loop

The feature with minimum Sj was always selected as the next fea-
ture of the model (feature set G) in the end of each feature selection
loop. The objective of the criterion Sj was that the selected input fea-
tures would simultaneously minimize both the relative root-mean-
squared error (RMSE%V) and the absolute relative systematic error
(BIAS%V) and maximize the coefficient of determination (R2V) for the
validation set.

After selecting the next feature, the relative RMS error for the va-
lidation data set (RMSE%V) was recorded for the obtained model having

i input features. The model Mk that produced the minimum RMSE%V i

(i=1, …,N) was selected as the best performing model after the
completion of the feature selection.

The performance measures for the test set were then computed with
the obtained model in the end of each run of the wrapper program. The
accuracy measures included the coefficient of determination R2, abso-
lute and relative root mean square error (RMSE and RMSE%) and ab-
solute and relative bias (BIAS and BIAS%):

=R
y y
y y

1
( )
( )

i i i

i i

2
2

2 (2)

= = ×RMSE
y y

n
RMSE RMSE

y
( )

, % 100i i i
2

(3)

= = ×BIAS
y y
n

BIAS BIAS
y

( )
, % 100i i i

(4)

With yi as the observed values from forest inventory and y their
mean. yi were the predicted values and n was the total number of field
plots. All sums are for i=1, …, n.

The wrapper was repeated 100 times for each separate test setup.

Fig. 2. Overall flow chart of the modelling program.
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The arithmetic mean values of the performance measures and their
lower and upper confidence levels were computed from the results of
these 100 iterations. Also, the order in which the input features (image
channels) were selected to the model in the forward selection scheme
and the number of features selected to the best performing model were
recorded. The band selection order data from the 100 iterations were
used to compute statistics on the most important S2 and L8 bands.

3.3. Implementation of the modelling methods

An individual model was trained for each of the forest variables
using the Matlab ‘trainlm’ function of the Neural Network Toolbox for
the neural network model and ‘fitrtree’ function of the Statistics and
Machine Learning Toolbox for the regression tree model. The multilayer
perceptron (MLP) neural network model contained one hidden layer
with sigmoidal transfer functions, and one linear output node. The
network output was recalculated to cover only positive values. The
number of hidden layer neurons was set to nf+ 1 (nf= number of MLP
input features). The ‘trainlm’ network training function updated the
network weights and bias values according to Levenberg-Marquardt
optimization (Gill and Murray, 1978).

The regression tree models were created using the ‘fitrtree’ function
with default parameters. The function output is a binary tree where
each branching node is split based on the values of a column of an input
feature table, i.e. on the values of multispectral channel data. The
number of tree branches varied roughly between 35 and 50 during the
feature selection iterations reflecting the number of input features
presented to the function.

4. Results

4.1. Best predictive image bands

The order in which the spectral bands were selected as model input
features in the forward selection modelling reflected the importance of
the band in the prediction of a certain forest variable. The results from
the feature selection indicated clear differences between the spectral
bands with the models for variable totals including all species.
However, with the models for species-wise variables there was large
variation in band order both between different variables and species,
and consequently common conclusions for those models could not be
made. The results reported here consider thus only the models for
variable totals (D, G, H and V).

The first S2 red edge band (B05-RE1) was clearly the best predictor
for all forest variables as shown in Table 4. Its performance was par-
ticularly pronounced for the growing stock volume V. The green band
(B03-Green) was the best predictor of the visible bands for three of the
variables: it was the second-best band for stem basal area G and
growing stock volume V, and seventh for tree height H. The visible
bands were not among the best six predictors for stem diameter D. One
or both short-wave infrared bands (B11-SWIR1, B12-SWIR2) were in-
cluded in the best-performing models (Table 4, greyed cells) for all
variables. The near-infrared bands (B8a-nNIR or B08_NIR) were among
the best predictors for stem diameter and tree height, but did not rank
high for stem basal area and stem volume models. The 10-meter re-
solution of Sentinel-2 did not seem to provide a special advantage to the
20-meter bands but rather vice versa, which is not surprising since the
average field plot size was closer to 20m.

The best predictor for L8 models was the green band (B3-Green)
that was ranked first for stem basal area, tree height and growing stock
volume and second for stem diameter (Table 4). The near-infrared band
(B5-NIR) was the best predictor for stem diameter, and second best for
tree height, but was ranked last with stem basal area and stem volume.
The blue bands (B1-VD Blue & B2-Blue) were generally ranked high
(second or third). The median number of bands in the best models was 4
or 6 with S2 data and 4 or 5 with L8 data.

Table 5 with near-equivalent S2 and L8 bands shows very good
consistency among the stem basal area, tree height and growing stock
volume models for both satellite data with the green band as the best
predictor, and as second and third best for stem diameter. The near-
infrared (B8a-nNIR) band was ranked generally high in the S2 models,
except for stem basal area. The blue band (B2-Blue) was the second best
predictor for all the variables for L8 satellite data.

The results from the test with the combined S2 and L8 image bands
(Table 6) confirm the strength of S2 data as model predictors. The four
best predictors for all variables were S2 bands, the red-edge band 1
(S2_B05_RE1) being the best for all variables but stem diameter, for
which it was third. There were only 1 or 2 L8 bands in the best per-
forming models on average, while the number of predictors in them
varied from 6 to 10.

4.2. Prediction performance

Examples of the progress of performance figures of MLP modelling
for two forest variables, total stem volume (V) and tree height (H), are
shown in Figs. 3 and 4 respectively. The graph plots show the median
values of performance measures RMSE%, BIAS% and R2 for the training
set, validation set and test set from 100 iterations using Sentinel-2 data
(a), and Landsat 8 data (b). The top graphs show the typical overall
decreasing development of the training set RMSE%. The minimum lo-
cations of the validation set and test set RMSE% indicate the point
where overfitting to the training set starts to occur. The figures also
show the ranking of input image bands from the modelling process.
Scatterplots of test data set prediction for one modelling iteration are
shown in Figs. 5 and 6 for the four total variables including all species
(D, G, H and V).

The averages of test set performance measures relative RMS-value,
relative BIAS and the coefficient of determination and their 99% lower
and upper confidence intervals from 100 MLP modelling iterations, are
shown in Table 7 (RMSE%, BIAS%) and Table 8 (R2) for the four forest
variables and their species-wise components. All image bands (feature
set A) were used for both S2 and L8 for the data in these two tables (test
setups S2_All and L8_All). The mean RMSE% and R2 values for the
variable totals (D, G, H and V) in all test setups and are shown in Fig. 7.
For a complete set of estimated variables the RMSE% and R2 values are
shown in Appendix A, Tables A1 and A2, respectively.

4.2.1. Models using all spectral bands
When all the spectral bands of both S2 and L8 were included in the

modelling (test setups S2_All and L8_All), the test set RMS errors of S2
predictions were 6.3–13.0% lower than with L8 data when the total
variable (D, G, H and V) predictions were considered. The RMSE values
for the species-wise variables for S2 were 4.3–23.5% lower than for L8.
The BIAS values were very low for both S2 and L8 predictions. The
average of the BIAS% absolute values over all the forest variables was
0.8% and 1.2% for S2 and L8, respectively (Table 7). The coefficient of
determination (R2) for S2 predictions varied between 0.56 and 0.65 for
total variables including all species and 0.23 and 0.57 for species-wise
variables, as for L8 the corresponding figures were 0.38–0.51 and
0.17–0.38 (Table 8).

4.2.2. Comparison of the different test setups
Figs. 7 and 8 show the RMSE% and R2 results for the variable totals

from the defined test setups. The bar groups S2_All and L8_All are re-
plicas of the results shown already in Tables 7 and 8. The bar group
S2_30_All shows the average performance of the models produced with
S2 data with all bands (feature set A) that was down-sampled to
30m pixel resolution. The RMSE values increased on average 2.2% and
2.7% for total variables and species-wise variables, respectively, when
compared to the S2 results with original pixel resolution (test setups
S2_All vs. S2_30_All).

The down-sampled S2 data was compared to L8 data using the near-
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equivalent bands of S2 and L8 (feature set B). The differences were
smaller than with S2 original resolution data but still clear for the
benefit of S2: The RMSE of L8-based predictions was 3.8% and 5.8%
higher on average than the S2 predictions for total and species-wise
variables, respectively (setup L8_Eqv vs. S2_30_Eqv in Fig. 7). The R2

values of S2 for this test case were 0.52, 0.50, 0.54 and 0.49 for stem
diameter, stem basal area, tree height and growing stock volume, re-
spectively.

The S2 total variable models without the red-edge bands (feature set
C) performed on average 1.6% worse than the S2 models using all
image bands (setup S2_All vs. S2_wo_RE in Fig. 7). With species-wise
variables there was no clear difference between the test setups. The
MLP models with only the S2 10m resolution bands (feature set D)

produced 2.2% and 1.4% higher RMSE% values than the models with
all image bands for total and species-wise variables, respectively (setup
S2_All vs. S2_10). The corresponding figures for the models with only
20m resolution bands (feature set E) were 0.4% and 2.3%, i.e. with the
total forest variables there was no reduction in performance (setup
S2_All vs. S2_20).

There was no added value of the L8 band usage to the prediction
performance in terms of RMSE when using combined S2 and L8 bands
for modelling (setup S2_All vs. S2_L8_All in Fig. 7). The four or more
best predictive features were S2 bands (Table 6).

The regression tree models did not perform as well as the multilayer
perceptron models (test setups S2_All & L8_All vs. setups S2_All_rTree &
L8_All_rTree, respectively, in Fig. 7). The RMSE values for the

Table 4
The number of cases of 100 iterations in which a band was selected as input to the best model sorted in
decreasing order. MLP model using feature set A. The greyed cells indicate the median number (of 100
iterations) of bands that were selected into the best-performing model.

Sen�nel-2/feature set A 
No D No 

cases 
G No 

cases 
H No 

cases 
V No 

cases Band Band Band Band 
1 B05_RE1 84 B05_RE1 87 B05_RE1 89 B05_RE1 88 
2 B08_NIR 75 B03_Green 65 B06_RE2 68 B03_Green 62 
3 B12_SWIR2 66 B12_SWIR2 45 B11_SWIR1 66 B06_RE2 49 
4 B06_RE2 60 B02_Blue 43 B08_NIR 63 B11_SWIR1 48 
5 B07_RE3 58 B07_RE3 40 B8a_nNIR 62 B08_NIR 43 
6 B8a_nNIR 56 B06_RE2 38 B12_SWIR2 59 B8a_nNIR 43 
7 B02_Blue 53 B04_Red 37 B03_Green 58 B12_SWIR2 41 
8 B04_Red 53 B11_SWIR1 36 B04_Red 48 B04_Red 39 
9 B03_Green 50 B8a_nNIR 35 B07_RE3 48 B07_RE3 38 
10 B11_SWIR1 48 B08_NIR 33 B02_Blue 43 B02_Blue 33 

Landsat 8/feature set A 
No D No 

cases 
G No 

cases 
H No 

cases 
V No 

casesBand Band Band Band 
1 B5-NIR 94 B3-Green 91 B3-Green 86 B3-Green 88 
2 B3-Green 81 B1-VD Blue 73 B5-NIR 79 B2-Blue 73 
3 B1-VD Blue 70 B6-SWIR1 68 B2-Blue 78 B4-Red 63 
4 B4-Red 67 B4-Red 67 B4-Red 67 B7-SWIR2 58 
5 B6-SWIR1 63 B7-SWIR2 64 B1-VD Blue 62 B1-VD Blue 57 
6 B2-Blue 60 B2-Blue 61 B6-SWIR1 56 B6-SWIR1 56 
7 B7-SWIR2 56 B5-NIR 61 B7-SWIR2 56 B5-NIR 52 

Table 5
The number of cases of 100 iterations in which a band was selected as input to the best model sorted in
decreasing order. MLP model using feature set B. The greyed cells indicate the median number (of 100
iterations) of bands that were selected into the best-performing model.

Sen�nel-2/feature set B 
No D No 

cases 
G No 

cases 
H No 

cases 
V No 

casesBand Band Band Band 
1 B8a_nNIR 97 B03_Green 96 B03_Green 98 B03_Green 88 
2 B03_Green 82 B12_SWIR2 68 B8a_nNIR 86 B8a_nNIR 84 
3 B04_Red 60 B11_SWIR1 63 B04_Red 70 B04_Red 65 
4 B11_SWIR1 56 B02_Blue 57 B02_Blue 60 B11_SWIR1 63 
5 B12_SWIR2 55 B04_Red 54 B11_SWIR1 59 B12_SWIR2 60 
6 B02_Blue 54 B8a_nNIR 51 B12_SWIR2 57 B02_Blue 46 

Landsat 8/feature set B 
No D No 

cases 
G No 

cases 
H No 

cases 
V No 

casesBand Band Band Band 
1 B5-NIR 98 B3-Green 90 B3-Green 90 B3-Green 90 
2 B2-Blue 79 B2-Blue 73 B2-Blue 87 B2-Blue 84 
3 B3-Green 78 B6-SWIR1 70 B5-NIR 81 B4-Red 69 
4 B6-SWIR1 65 B4-Red 66 B6-SWIR1 70 B5-NIR 68 
5 B4-Red 63 B5-NIR 61 B4-Red 68 B6-SWIR1 66 
6 B7-SWIR2 54 B7-SWIR2 60 B7-SWIR2 59 B7-SWIR2 63 
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Table 6
The number of cases of 100 iterations in which a band was selected as input to the best model sorted in
decreasing order. MLP model using both Sentinel-2 and Landsat 8 image bands of feature set A. The
greyed cells indicate the median number (of 100 iterations) of bands that were selected into the best
performing model.

No D No 
cases 

G No 
cases 

H No 
cases 

V No 
casesBand Band Band Band 

1 S2_B06_RE2 70 S2_B05_RE1 79 S2_B05_RE1 80 S2_B05_RE1 90 
2 S2_B08_NIR 63 S2_B03_Green 64 S2_B06_RE2 67 S2_B03_Green 51 
3 S2_B05_RE1 61 S2_B11_SWIR1 54 S2_B03_Green 65 S2_B06_RE2 49 
4 S2_B03_Green 54 S2_B04_Red 44 S2_B11_SWIR1 65 S2_B04_Red 46 
5 S2_B07_RE3 54 L8_B1_VD_Blue 44 S2_B08_NIR 62 L8_B4_Red 45 
6 L8_B1_VD_Blue 54 S2_B06_RE2 42 S2_B07_RE3 61 S2_B02_Blue 43 
7 L8_B3_Green 53 L8_B3_Green 39 S2_B8a_nNIR 59 S2_B08_NIR 40 
8 S2_B8a_nNIR 51 S2_B07_RE3 38 S2_B12_SWIR2 59 L8_B2_Blue 39 
9 L8_B4_Red 46 S2_B8a_nNIR 38 L8_B3_Green 59 L8_B3_Green 39 
10 L8_B7_SWIR2 46 S2_B12_SWIR2 38 L8_B6_SWIR1 59 S2_B07_RE3 38 
11 S2_B04_Red 45 L8_B4_Red 35 L8_B1_VD_Blue 58 S2_B12_SWIR2 38 
12 S2_B12_SWIR2 44 S2_B02_Blue 34 S2_B04_Red 56 L8_B5_NIR 38 
13 L8_B2_Blue 44 S2_B08_NIR 34 L8_B2_Blue 54 L8_B6_SWIR1 38 
14 L8_B5_NIR 44 L8_B5_NIR 34 L8_B7_SWIR2 54 S2_B11_SWIR1 37 
15 S2_B11_SWIR1 41 L8_B7_SWIR2 33 L8_B4_Red 50 L8_B1_VD_Blue 37 
16 S2_B02_Blue 37 L8_B2_Blue 31 S2_B02_Blue 48 L8_B7_SWIR2 36 
17 L8_B6_SWIR1 37 L8_B6_SWIR1 23 L8_B5_NIR 41 S2_B8a_nNIR 35 

Fig. 3. Examples of median values of relative RMS-error (RMSE%), relative BIAS (BIAS%) and coefficient of determination (R2) for total stem volume (V) obtained
from 100 MLP modelling iterations using a) Sentinel-2 and b) Landsat 8 data and feature set A. The horizontal axis of the bottom graph shows the ranking of the
features from the 100 iterations, with the best predictors on the left. The median number of features in the 100 best performing models (providing the minimum
validation set RMSE% error) has been indicated in the top graphs.
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regression tree predictions were on the average 15.9% or 12.3% higher
for S2 and L8, respectively, than with the MLP models. The only ex-
ception to this was obtained with the L8 model for broadleaved trees,
for which the regression tree model produced lower RMSE% values.
However, the R2 values for these predictions remained modest (≤0.27)
(see Appendix A. Tables A1 & A2). The reason for this remained un-
clear. The performance differences between L8 and S2 are in line with
the results from the tests with MLP models.

In the systematic error there was no significant difference between
the two instruments. The BIAS% values were very low in all the tests for
both instruments and all forest variable models.

In our tests there was no difference in the prediction performance
between the models produced with the S2 narrow NIR (B8a_nNIR) band
when compared with models with the NIR (B08_NIR) band.

5. Discussion

The obtained results show better predictive capability of the models
using Sentinel-2 MSI data when compared to Landsat 8 OLI data. The
explanatory factors for the better S2 performance are the additional
image channels, especially the red-edge band 1, and the better pixel
resolution. In our tests, down-sampling the original spatial resolution of
S2 data had an approximately equal decreasing effect on the prediction

performance as leaving out the red-edge bands. With near-equivalent
bands and with reduced spatial resolution, the models based on S2 data
performed better than the L8 models. One possible explanation for this
might be that as the field plot data were measured with radii R=5.6m,
R= 9m and R=12.6m it was supposed to favor the smaller pixel
resolution S2 data with ground pixel area matching better the field plot
area. However, this could not be verified as the reference data set was
not representative enough, and thus the factors for the remaining dif-
ference continue to be unclear. An interesting result was that the S2
performance for predicting the total forest variables was almost equal
with the 20m image bands only and with all S2 bands. This may be
significant for mapping projects with limited critical processing power
or data storage capacity.

The results from the feature selection reflect the high correlations
between the forest variables and the Sentinel-2 B05-RE1, B03-Green
and B11-SWIR1/B12-SWIR2 image bands, and the Landsat 8 B3-Green
band (see Appendix B. Tables B1 & B2). An interesting result was that
the Landsat 8 blue bands (B1-VD Blue, B2-Blue) were among the best
predictors for all the forest variables.

Our results agree to large extent with the results from other studies.
The predictive power of S2 red-edge bands, and especially red-edge 1,
has been reported in recent studies of crop and tree species classifica-
tion (Immitzer et al., 2016) and biophysical variable prediction

Fig. 4. Examples of median values of relative RMS-error (RMSE%), relative BIAS (BIAS%) and coefficient of determination (R2) for tree height (H) obtained from 100
MLP modelling iterations using a) Sentinel-2 and b) Landsat 8 data and feature set A. The horizontal axis of the bottom graph shows the ranking of the features from
the 100 iterations, with the best predictors on the left. The median number of features in the 100 best performing models (providing the minimum validation set
RMSE% error) has been indicated in the top graphs.
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Fig. 5. Scatterplots of test data set predictions for Sentinel-2 example models. MLP prediction, feature set A.

Fig. 6. Scatterplots of test data set predictions for Landsat 8 example models. MLP prediction, feature set A.
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(Delegido et al., 2011; Korhonen et al., 2017). With a similar type of
test arrangement using L8-equivalent bands from S2 re-sampled to 30m
resolution (Topaloǧlu et al., 2016) a better classification accuracy was
reported for S2 in land cover/land use mapping.

Chrysafis et al. (2017) reported a similar overall order of predictor
importance for the growing stock volume (GSV) random forest regres-
sion model. The most interesting difference was that they found the
short-wave infrared band 1 (SWIR1) to be the most important band for
both S2 and L8 models, as the red-edge 1 (RE-1) and green bands ob-
tained the highest ranks in our tests for S2 and L8 models, respectively.
For the GSV prediction performance the authors reported only a slight
difference between S2 and L8, while our results showed clearly better
results for S2. The different biome with respect to our study may ex-
plain the differences in the results.

6. Conclusions

The models based on Sentinel-2 data outperformed Landsat 8
models for all forest variables in terms of root mean square error and
coefficient of determination (R2). In the systematic error there was no
significant difference between the two instruments. In general, the
systematic error of the test data set was very low for all forest variable
models and for both satellite data sets. The selected MLP modelling
method resulted in low bias in most of the models. A somewhat sur-
prising result was that using Landsat 8 image bands in combination
with Sentinel-2 data did not improve the prediction accuracy with re-
spect to the best model with Sentinel-2 bands only. Another interesting
result was that the prediction accuracy of the models for variable totals
was practically the same when using all image bands or only the 20m
resolution bands of Sentinel-2.

The factors explaining the better performance of S2 data with re-
spect to L8 data were the additional red-edge bands and the better
spatial resolution, which had a slightly stronger effect. However, our
tests did not explain all the observed performance difference between
S2- and L8-based predictions.

According to our tests, the best predictive S2 image band was the
red-edge 1 (B05_RE1) for the estimation models of variable totals in-
cluding all species. The short-wave infrared bands (B11_SWIR1 or
B12_SWIR2) and the visible green band (B03_Green) were also among
the best predictors. General conclusions for the predictor importance
for the species-wise variable models could not be made. The median
number of predictors in the best performing models was 4–6 for S2
models and 4–5 for L8 models.

In Finland and Scandinavia in general, forest management systems
are very advanced and they receive plenty of public financial support.
National forest inventories in Finland and Sweden use satellite images
to augment the principal information from the field plots4,5 (Tomppo
et al., 2014; Fridman et al., 2014). The operational management
planning has moved from using aerial photography and fieldwork to
airborne laser scanning and digital airborne imaging. Free and timely
Sentinel-2 data has raised growing interest within past two years. The

Table 7
Average relative test set RMS-error and relative BIAS for N=100 iterations of the MLP prediction using feature set A with 99% confidence intervals
(CIL= confidence interval lower limit, CIU= confidence interval upper limit) for total and species-wise variables (BL: broad-leaved, Spr: spruce). Test setups S2_All
and L8_All.

Variable RMSE% BIAS%

Sentinel-2 Landsat 8 Sentinel-2 Landsat 8

Mean CIL CIU Mean CIL CIU Mean CIL CIU Mean CIL CIU

D 38.4 37.6 39.1 44.6 43.8 45.5 −0.13 −1.01 0.76 −1.36 −2.49 −0.22
G 42.5 41.9 43.1 50.2 49.0 51.5 −0.94 −1.78 −0.10 −1.62 −2.60 −0.65
H 30.4 30.0 30.9 36.6 36.0 37.2 −0.35 −1.09 0.40 −0.81 −1.64 0.02
V 59.3 58.4 60.2 72.2 69.3 75.2 −1.42 −2.54 −0.29 −2.50 −3.75 −1.24
D_BL 85.5 84.3 86.7 89.8 88.4 91.1 1.02 −0.89 2.93 0.18 −1.90 2.27
D_Pine 101.4 99.7 103.1 108.2 105.2 111.2 −1.18 −3.39 1.02 1.53 −1.11 4.17
D_Spr 64.5 63.5 65.5 74.1 72.7 75.4 0.47 −1.14 2.07 0.67 −0.92 2.26
G_BL 119.8 116.4 123.2 136.3 125.3 147.3 0.71 −2.04 3.46 −1.73 −5.25 1.79
G_Pine 110.6 108.4 112.8 124.0 121.1 126.8 0.93 −1.47 3.32 −1.18 −4.30 1.94
G_Spr 92.8 91.4 94.2 111.7 109.3 114.1 −1.94 −3.85 −0.03 −0.61 −2.80 1.59
H_BL 69.0 68.1 70.0 73.7 72.5 75.0 0.64 −1.02 2.30 0.67 −1.04 2.38
H_Pine 93.6 92.0 95.1 99.5 97.9 101.0 −0.78 −2.80 1.25 1.14 −1.15 3.44
H_Spr 58.2 57.3 59.0 67.2 66.1 68.3 0.15 −1.21 1.51 1.00 −0.51 2.50
V_BL 160.0 154.7 165.3 191.1 142.6 239.6 −0.17 −4.48 4.14 0.25 −5.27 5.77
V_Pine 122.3 119.9 124.7 140.3 135.9 144.7 −0.59 −3.26 2.07 −1.42 −4.59 1.74
V_Spr 111.7 110.0 113.4 135.1 132.9 137.3 −1.04 −3.36 1.27 −1.97 −3.89 −0.04

Table 8
Average coefficient of determination (R2) for N=100 iterations of the MLP
prediction using feature set A with 99% confidence intervals (CIL= confidence
interval lower limit, CIU= confidence interval upper limit) for total and spe-
cies-wise variables (BL: broad-leaved, Spr: spruce). Test setups S2_All and
L8_All.

Variable R2

Sentinel-2 Landsat 8

Mean CIL CIU Mean CIL CIU

D 0.60 0.59 0.61 0.47 0.46 0.49
G 0.57 0.56 0.58 0.42 0.40 0.44
H 0.65 0.64 0.66 0.51 0.50 0.53
V 0.56 0.55 0.57 0.38 0.36 0.40
D_BL 0.23 0.22 0.25 0.17 0.15 0.18
D_Pine 0.29 0.28 0.31 0.22 0.20 0.24
D_Spr 0.52 0.51 0.53 0.38 0.37 0.40
G_BL 0.36 0.35 0.38 0.30 0.27 0.32
G_Pine 0.46 0.45 0.47 0.33 0.32 0.35
G_Spr 0.56 0.55 0.57 0.38 0.37 0.40
H_BL 0.29 0.28 0.31 0.21 0.19 0.22
H_Pine 0.32 0.31 0.34 0.24 0.23 0.25
H_Spr 0.54 0.53 0.55 0.40 0.39 0.42
V_BL 0.23 0.21 0.25 0.24 0.21 0.27
V_Pine 0.44 0.42 0.45 0.29 0.27 0.31
V_Spr 0.57 0.56 0.58 0.38 0.36 0.39

4 http://kartta.luke.fi/index-en.html, accessed December 7, 2018.
5 https://www.slu.se/en/Collaborative-Centres-and-Projects/the-swedish-

national-forest-inventory/forest-statistics/slu-forest-map/, accessed December
7, 2018.
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ongoing or near-future operational applications of Sentinel-2 are on
monitoring of forest cuttings and development and condition of the
seedling stands.

The next phase in the utilization of Sentinel-2 data to support forest
management will be to extend the services to growing forest stands.
Airborne laser scanning can reach approximately to RMS-errors of 20%
of the mean of the total volume at the level of a single sample plot
(Kankare et al., 2013) whereas in this study the errors were close to
60%. A problem with optical and radar satellite data has been satura-
tion of the estimate approximately at 250m3/ha or 150 tons/ha (Zhao
et al., 2016). In this study, the saturation was less pronounced than
what was observed earlier. Later studies will focus on investigating the
accuracy of Sentinel-2 based estimation at forest stand level, i.e. for

units of a couple of hectares. The stands are the basic units in the op-
erational forest management. The errors are expected to be clearly
smaller than what was reported here. Methods to combine less frequent
and expensive but more accurate airborne laser scanner data with fre-
quent and inexpensive Sentinel-2 based estimation will be investigated.

In the tropical forest with strong anthropogenic influence and
modest biomass levels the performance of optical (and radar) satellite
data has been similar to the boreal forest (Häme et al., 2013). We hy-
pothesize that the difference of the performance between Sentinel-2
and Landsat 8 is also in the same order of magnitude in the tropics.
Laser scanning is not a realistic option in most tropical areas but not in
most boreal forests either, due to expenses or administrative reasons.
Rainforest with closed canopy is a challenge for remote sensing. The

Fig. 7. The mean relative RMSE values from the different modelling test setups for four forest variables. Columns for test setups S2_All and L8_All repeat the mean
RMSE% results from Table 7. Test setups ordered according to increasing sum of RMSE% of variables D, G, H & V.

Fig. 8. The mean coefficient of determination R2 values rom the different modelling test setups for four forest variables. Test setups ordered according to decreasing
sum of R2 of variables D, G, H & V.

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

269



most promising alternatives there include SAR interferometry
(Antropov et al., 2018; Solberg et al., 2017) and the low frequency P-
band SAR that will be on board the Biomass mission of the European
Space Agency (Le Toan et al., 2011).
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Appendix A. The RMSE% and R2 values of the different modelling test setups for sixteen forest variables

Table A1
The mean relative RMS errors of the different modelling test setups for sixteen forest variables.

Test setup S2_All L8_All S2_Eqv L8_Eqv S2_30_Eqv S2_30_All S2_wo_RE S2_10 S2_20 S2_L8_All S2_All_rTree L8_All_rTree

Instrument (L8/S2) S2 L8 S2 L8 S2 S2 S2 S2 S2 L8 & S2 S2 L8

Pixel resolution 10/20m 30m 10/20m 30m 30m 30m 10/20m 10m 20m 10/20/30m 10/20m 30m

Feature set A A B B B A C D E A A A

D 38.4 44.6 39.7 44.7 42.3 41.1 39.8 39.9 38.8 39.2 47.4 53.7
G 42.5 50.2 43.0 50.2 46.2 44.1 43.6 44.5 43.1 44.5 49.9 58.4
H 30.4 36.6 32.5 37.3 35.2 32.9 32.5 33.1 30.7 31.1 38.2 44.3
V 59.3 72.2 60.8 71.0 64.1 61.5 61.2 61.7 59.4 60.7 68.8 80.4
D_BL 85.5 89.8 87.9 90.1 89.7 87.8 86.8 88.0 85.6 85.6 103.1 108.3
D_Pine 101.4 108.2 101.8 106.3 102.4 103.0 100.9 102.3 101.7 103.0 120.3 124.2
D_Spr 64.5 74.1 66.2 74.9 69.8 68.2 65.8 66.3 66.9 65.5 78.0 88.8
G_BL 119.8 136.3 123.7 126.5 132.0 121.7 116.5 122.5 118.9 121.9 147.4 144.3
G_Pine 110.6 124.0 111.8 125.9 119.0 116.8 109.9 108.2 119.1 116.5 128.7 143.9
G_Spr 92.8 111.7 92.0 111.0 97.4 97.7 93.0 95.2 96.7 94.9 107.1 127.8
H_BL 69.0 73.7 72.1 73.6 74.3 71.7 70.6 72.2 69.2 69.1 85.3 88.7
H_Pine 93.6 99.5 95.3 100.3 96.0 96.1 93.8 94.6 94.3 96.1 112.4 116.5
H_Spr 58.2 67.2 59.3 67.5 62.1 61.2 59.1 59.7 60.2 58.6 70.8 80.1
V_BL 160.0 191.1 163.2 166.6 163.8 153.8 154.0 162.2 157.7 179.9 189.7 180.4
V_Pine 122.3 140.3 122.5 140.8 131.0 130.1 120.3 120.7 130.3 126.7 139.1 158.1
V_Spr 111.7 135.1 112.7 140.5 116.9 114.3 112.8 114.1 115.9 112.9 127.4 152.8

Table A2
The mean R2 values of the different modelling test setups for sixteen forest variables.

Test setup S2_All L8_All S2_Eqv L8_Eqv S2_30_Eqv S2_30_All S2_wo_RE S2_10 S2_20 S2_L8_All S2_All_rTree L8_All_rTree

Instrument (L8/S2) S2 L8 S2 L8 S2 S2 S2 S2 S2 L8 & S2 S2 L8

Pixel resolution 10/20m 30m 10/20m 30m 30m 30m 10/20m 10m 20m 10/20/30m 10/20m 30m

Feature set A A B B B A C D E A A A

D 0.60 0.47 0.57 0.47 0.52 0.55 0.57 0.57 0.59 0.59 0.44 0.32
G 0.57 0.42 0.56 0.42 0.50 0.54 0.55 0.54 0.56 0.55 0.45 0.28
H 0.65 0.51 0.61 0.50 0.54 0.60 0.61 0.59 0.65 0.65 0.50 0.35
V 0.56 0.38 0.54 0.39 0.49 0.53 0.54 0.52 0.56 0.55 0.45 0.28
D_BL 0.23 0.17 0.19 0.16 0.15 0.19 0.21 0.19 0.22 0.23 0.11 0.05
D_Pine 0.29 0.22 0.28 0.23 0.28 0.28 0.30 0.28 0.28 0.28 0.17 0.13
D_Spr 0.52 0.38 0.50 0.37 0.45 0.47 0.50 0.50 0.49 0.51 0.37 0.23
G_BL 0.36 0.30 0.33 0.31 0.24 0.32 0.36 0.33 0.37 0.35 0.19 0.17
G_Pine 0.46 0.33 0.44 0.31 0.38 0.40 0.46 0.48 0.36 0.42 0.34 0.21
G_Spr 0.56 0.38 0.57 0.38 0.52 0.52 0.57 0.54 0.53 0.55 0.46 0.27
H_BL 0.29 0.21 0.23 0.20 0.17 0.24 0.26 0.23 0.28 0.29 0.13 0.08
H_Pine 0.32 0.24 0.30 0.24 0.29 0.29 0.32 0.31 0.30 0.29 0.18 0.14
H_Spr 0.54 0.40 0.53 0.39 0.48 0.50 0.53 0.52 0.51 0.54 0.39 0.26
V_BL 0.23 0.24 0.21 0.24 0.16 0.24 0.22 0.20 0.26 0.22 0.09 0.11
V_Pine 0.44 0.29 0.43 0.27 0.35 0.36 0.45 0.44 0.34 0.40 0.34 0.19
V_Spr 0.57 0.38 0.57 0.35 0.53 0.54 0.57 0.55 0.54 0.56 0.46 0.27

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

270



A
pp
en
di
x
B.

Co
rr
el
at
io
n
m
at
ri
x
be
tw
ee
n
sa
te
lli
te
im
ag
e
ch
an
ne
ls
an
d
fo
re
st
va
ri
ab
le
s

Ta
bl
e
B1

Co
rr
el
at
io
n
co
effi

ci
en
ts
be
tw
ee
n
Se
nt
in
el
-2

ba
nd
s
an
d
fo
re
st
va
ri
ab
le
s
V,

H
,D

,G
.T

he
im
ag
e
ch
an
ne
ls
co
rr
el
at
in
g
m
ax
im
al
ly
w
ith

ea
ch

fo
re
st
va
ri
ab
le
in
di
ca
te
d
w
ith

bo
ld
fig
ur
e.

S2
_B
02
_B
lu
e

S2
_B
03
_G
re
en

S2
_B
04
_R
ed

S2
_B
08
_N
IR

S2
_B
05
_R
E1

S2
_B
06
_R
E2

S2
_B
07
_R
E3

S2
_B
8a
_n
N
IR

S2
_B
11
_S
W
IR
1

S2
_B
12
_S
W
IR
2

To
t.
st
em

vo
l-

V
Tr
ee

he
ig
ht

-
H

St
em

D
ia
m
-

D
Ba
sa
lA

re
a
-

G

S2
_B
02
_B
lu
e

1
0.
87
7

0.
92
9

0.
49
1

0.
83
0

0.
54
5

0.
47
0

0.
47
8

0.
80
6

0.
86
7

−
0.
58
1

−
0.
49
0

−
0.
56
0

−
0.
53
6

S2
_B
03
_G
re
en

1
0.
87
3

0.
69
1

0.
93
3

0.
73
3

0.
66
0

0.
66
7

0.
84
3

0.
83
5

−
0.
71
8

−
0.
66
4

−
0.
73
1

−
0.
66
2

S2
_B
04
_R
ed

1
0.
42
7

0.
85
7

0.
49
8

0.
41
9

0.
43
1

0.
81
6

0.
89
8

−
0.
60
0

−
0.
48
0

−
0.
55
6

−
0.
53
8

S2
_B
08
_N
IR

1
0.
69
8

0.
96
1

0.
96
6

0.
96
6

0.
74
2

0.
56
7

−
0.
60
7

−
0.
72
2

−
0.
68
3

−
0.
61
4

S2
_B
05
_R
E1

1
0.
78
6

0.
71
7

0.
72
7

0.
92
2

0.
90
2

−
0.
74
3

−
0.
68
6

−
0.
75
0

−
0.
69
0

S2
_B
06
_R
E2

1
0.
98
6

0.
98
9

0.
81
4

0.
65
0

−
0.
64
3

−
0.
73
7

−
0.
71
8

−
0.
64
4

S2
_B
07
_R
E3

1
0.
99
5

0.
76
5

0.
58
7

−
0.
59
7

−
0.
70
6

−
0.
67
3

−
0.
60
7

S2
_B
8a
_n
N
IR

1
0.
77
8

0.
59
8

−
0.
60
7

−
0.
70
9

−
0.
67
6

−
0.
61
3

S2
_B
11
_S
W
IR
1

1
0.
95
5

−
0.
69
5

−
0.
61
0

−
0.
63
6

−
0.
63
5

S2
_B
12
_S
W
IR
2

1
−
0.
64
9

−
0.
51
5

−
0.
57
1

−
0.
58
1

To
t.
st
em

vo
l-

V
1

0.
71
7

0.
78
2

0.
95
1

Tr
ee

he
ig
ht

-H
1

0.
95
5

0.
79
8

St
em

D
ia
m
-D

1
0.
85
1

Ba
sa
lA

re
a
-G

1

Ta
bl
e
B2

Co
rr
el
at
io
n
co
effi

ci
en
ts
be
tw
ee
n
La
nd
sa
t8

ba
nd
s
an
d
fo
re
st
va
ri
ab
le
s
V,

H
,D

,G
.T

he
im
ag
e
ch
an
ne
ls
co
rr
el
at
in
g
m
ax
im
al
ly
w
ith

ea
ch

fo
re
st
va
ri
ab
le
in
di
ca
te
d
w
ith

bo
ld
fig
ur
e.

B1
VD

Bl
ue

B2
Bl
ue

B3
G
re
en

B4
Re
d

B5
N
IR

B6
SW

IR
1

B7
SW

IR
2

To
t.
st
em

vo
l-

V
Tr
ee

he
ig
ht

-H
St
em

D
ia
m
-D

Ba
sa
lA

re
a
-G

B1
VD

Bl
ue

1
0.
97
7

0.
85
4

0.
87
0

0.
40
7

0.
72
9

0.
80
9

−
0.
34
5

−
0.
26
1

−
0.
29
8

−
0.
31
2

B2
Bl
ue

1
0.
90
2

0.
93
2

0.
40
2

0.
76
5

0.
86
3

−
0.
37
5

−
0.
30
3

−
0.
34
9

−
0.
34
8

B3
G
re
en

1
0.
95
0

0.
61
1

0.
88
5

0.
92
1

−
0.
56
7

−
0.
52
7

−
0.
58
6

−
0.
53
2

B4
Re
d

1
0.
42
1

0.
82
8

0.
93
2

−
0.
47
1

−
0.
40
3

−
0.
46
5

−
0.
43
6

B5
N
IR

1
0.
77
0

0.
57
3

−
0.
54
3

−
0.
64
4

−
0.
60
6

−
0.
54
5

B6
SW

IR
1

1
0.
94
8

−
0.
62
0

−
0.
55
3

−
0.
57
5

−
0.
56
7

B7
SW

IR
2

1
−
0.
55
2

−
0.
45
2

−
0.
49
9

−
0.
49
7

To
t.
st
em

vo
l-

V
1

0.
71
7

0.
78
2

0.
95
1

Tr
ee

he
ig
ht

-H
1

0.
95
5

0.
79
8

St
em

D
ia
m
-D

1
0.
85
1

Ba
sa
lA

re
a
-G

1

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

271



References

Antropov, O., Rauste, Y., Ahola, H., Häme, T., 2013. Stand-level stem volume of boreal
forests from spaceborne SAR imagery at L-band. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 6 (1). https://doi.org/10.1109/JSTARS.2013.2241018.

Antropov, O., Rauste, Y., Tegel, K., Baral, Y., Junttila, V., Kauranne, T., Häme, T., Praks,
J., 2018. Tropical forest tree height and above ground biomass mapping in Nepal
using Tandem-X and ALOS PALSAR Data. In: Proc. IEEE International Geoscience and
Remote Sensing Symposium IGARSS, 2018, pp. 5334–5336.

Astola, H., Bounsaythip, C., Ahola, J., Häme, T., Parmes, E., Sirro, L., Veikkanen, B., 2004.
Highforest - forest parameter estimation from high resolution remote sensing data. In:
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences - ISPRS Archives.

Binder, S., Haight, R.G., Polasky, S., Warziniack, T., Mockrin, M.H., Deal, R.L., Arthaud,
G., 2017. Assessment and Valuation of Forest Ecosystem Services: State of the Science
Review’. pp. 56 (May).

Blum, A.L., Langley, P., 1997. Selection of relevant features and examples in machine
learning. Artif. Intell. 97 (1–2), 245–271. https://doi.org/10.1016/S0004-3702(97)
00063-5.

Breiman, L., 1998. Classification and Regression Trees. Chapman & Hall/CRC.
Cajander, A.K., 1949. Forest types and their significance. Acta For. Fennica 1–71.
Chrysafis, I., Mallinis, G., Siachalou, S., Patias, P., 2017. Assessing the relationships be-

tween growing stock volume and Sentinel-2 imagery in a Mediterranean forest eco-
system. Remote Sens. Lett. 8 (6), 508–517. https://doi.org/10.1080/2150704X.2017.
1295479. (Taylor & Francis).

Cohen, W.B., Goward, S.N., 2017. Landsat's role in ecological applications of remote
sensing. 54 (6).

Delegido, J., Verrelst, J., Alonso, L., Moreno, J., 2011. Evaluation of sentinel-2 red-edge
bands for empirical estimation of green LAI and chlorophyll content. Sensors 11 (7),
7063–7081. https://doi.org/10.3390/s110707063.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B.,
Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F.,
Bargellini, P., 2012. Sentinel-2: ESA's optical high-resolution mission for GMES op-
erational services. Remote Sens. Environ. 120, 25–36. https://doi.org/10.1016/j.rse.
2011.11.026.

FAO, 2000. Global Forest Survey, Concept Paper. 2000. Forest Resource Assessment
Programme. Working Paper 28 FAO, Rome.

FAO, 2015. FAO Global Forest Resources Assessment 2015. UN Food and Agriculture
Organization, Rome.

Forkuor, G., Dimobe, K., Serme, I., Tondoh, J.E., 2017. Landsat-8 vs. Sentinel-2: ex-
amining the added value of sentinel-2's red-edge bands to land-use and land-cover
mapping in Burkina Faso. GISci. Remote Sens. 00 (00), 1–24. https://doi.org/10.
1080/15481603.2017.1370169. (Taylor & Francis).

Fridman, J., Holm, S., Nilsson, M., Nilsson, P., Ringvall, A.H., Ståhl, G., 2014. Adapting
national forest inventories to changing requirements – the case of the Swedish na-
tional forest inventory at the turn of the 20th century. Silva Fenn. 48 (3). https://doi.
org/10.14214/sf.1095.

Gill, P.E., Murray, W., 1978. Algorithms for the solution of the nonlinear least-squares
problem. SIAM J. Numer. Anal. 15 (5), 977–992. https://doi.org/10.1137/0715063.

Griffiths, P., Kuemmerle, T., Baumann, M., Radeloff, V.C., Abrudan, I.V., Lieskovsky, J.,
Munteanu, C., Ostapowicz, K., Hostert, P., 2014. Forest disturbances, forest recovery,
and changes in forest types across the carpathian ecoregion from 1985 to 2010 based
on landsat image composites. Remote Sens. Environ. 151, 72–88. https://doi.org/10.
1016/j.rse.2013.04.022.

Häme, T., Rauste, Y., Antropov, O., Ahola, H.A., Kilpi, J., 2013. Improved mapping of
tropical forests with optical and sar imagery, part ii: above ground biomass estima-
tion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6 (1). https://doi.org/10.1109/
JSTARS.2013.2241020.

Härkönen, S., Lehtonen, A., Eerikäinen, K., Peltoniemi, M., Mäkelä, A., 2011. Estimating
forest carbon fluxes for large regions based on process-based modelling, NFI data and
Landsat satellite images. For. Ecol. Manag. 262 (12), 2364–2377. https://doi.org/10.
1016/j.foreco.2011.08.035.

Helliwell, I.S., Turega, M.A., Cottis, R.A., 1995. Accountability of neural networks trained
with ‘real world’ data. IEE Conf. Publ. (409), 26–28.

Hinton, G.E., Osindero, S., Teh, Y.-W., 2006. A fast learning algorithm for deep belief
nets. Neural Comput. 18 (7), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.
1527.

Hyyppä, H., Inkinen, M., Engdahl, M., 2000. Accuracy Comparison of Various Remote
Sensing Data Sources in the Retrieval of Forest Stand Attributes. vol. 128. pp.
109–120.

Immitzer, M., Vuolo, F., Atzberger, C., 2016. First experience with Sentinel-2 data for
crop and tree species classifications in central Europe. Remote Sens. 8 (3). https://
doi.org/10.3390/rs8030166.

IPCC, 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Institute for Global
Environmental Strategies (IGES).

James, G., Witten, D., Hastie, T., Tibshirani, R., 2000. An introduction to statistical
learning. Curr. Med. Chem. https://doi.org/10.1007/978-1-4614-7138-7.

Kankare, V., Vastaranta, M., Holopainen, M., Räty, M., Yu, X., Hyyppä, J., Hyyppä, H.,
Alho, P., Viitala, R., 2013. Retrieval of forest aboveground biomass and stem volume
with airborne scanning LiDAR. Remote Sens. 5 (5), 2257–2274. https://doi.org/10.
3390/rs5052257.

Kaufman, Y.J., Sendra, C., 1988. Algorithm for automatic atmospheric corrections to
visible and near-IR satellite imagery. Int. J. Remote Sens. 9 (8), 1357–1381. https://
doi.org/10.1080/01431168808954942.

Kohavi, R., John, G.H., 1997. Wrappers for feature subset selection. Artif. Intell. 97 (1–2),

273–324. https://doi.org/10.1016/S0004-3702(97)00043-X.
Korhonen, L., Hadi, Packalen, P., Rautiainen, M., 2017. Comparison of Sentinel-2 and

Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote
Sens. Environ. 195, 259–274. https://doi.org/10.1016/j.rse.2017.03.021. (Elsevier
Inc.).

Le Toan, T., Quegan, S., Davidson, M.W.J., Balzter, H., Paillou, P., Papathanassiou, K.,
Plummer, S., Rocca, F., Saatchi, S., Shugart, H., Ulander, L., 2011. The BIOMASS
mission: mapping global forest biomass to better understand the terrestrial carbon
cycle. Remote Sens. Environ. 115 (11), 2850–2860. https://doi.org/10.1016/J.RSE.
2011.03.020. (Elsevier).

Lindberg, E., Hollaus, M., 2012. Comparison of methods for estimation of stem volume,
stem number and basal area from airborne laser scanning data in a hemi-boreal
forest. Remote Sens. 4 (4), 1004–1023. https://doi.org/10.3390/rs40401004.

Mäkelä, H., Pekkarinen, A., 2004. Estimation of Forest Stand Volumes by Landsat TM
Imagery and Stand-level Field-inventory Data. vol. 196. pp. 245–255. https://doi.
org/10.1016/j.foreco.2004.02.049.

Mäkelä, A., Pulkkinen, M., Kolari, P., Lagergren, F., Berbigier, P., Lindroth, A., Loustu, D.,
Nikinmaa, E., Vesala, T., Hari, P., 2007. Developing an empirical model of stand GPP
with the LUE approach: analysis of eddy covariance data at five contrasting conifer
sites in Europe. Glob. Chang. Biol. 0 (0). https://doi.org/10.1111/j.1365-2486.2007.
01463.x. (Blackwell Publishing Ltd, p. 071124112207003–???).

Mandanici, E., Bitelli, G., 2016. Preliminary comparison of sentinel-2 and landsat 8
imagery for a combined use. Remote Sens. 8 (12), 1014. https://doi.org/10.3390/
rs8121014.

Molinier, M., López-Sánchez, C.A., Toivanen, T., Korpela, I., Corral-Rivas, J.J., Tergujeff,
R., Häme, T., 2016. Relasphone-mobile and participative in situ forest biomass
measurements supporting satellite image mapping. Remote Sens. 8 (10). https://doi.
org/10.3390/rs8100869.

Persson, H.J., 2016. Estimation of Boreal Forest Attributes From Very High Resolution
Pléiades Data. https://doi.org/10.3390/rs8090736.

Persson, H.J., Fransson, J.E.S., 2017. Comparison between TanDEM-X- and ALS-based
estimation of aboveground biomass and tree height in boreal forests. Scand. J. For.
Res. 32 (4), 306–319. https://doi.org/10.1080/02827581.2016.1220618. (Taylor &
Francis).

Persson, H., Wallerman, J., Olsson, H., Fransson, J.E.S., 2013. Estimating forest biomass
and height using optical stereo satellite data and a DTM from laser scanning data.
Can. J. Remote. Sens. 39 (3), 251–262. https://doi.org/10.5589/m13-032. (Taylor &
Francis).

Peuhkurinen, J., Maltamo, M., Vesa, L., Packalén, P., 2008. Estimation of forest stand
characteristics using spectral histograms derived from an Ikonos satellite image.
Photogramm. Eng. Remote Sens. 74, 1335–1341 (American Society for
Photogrammetry and Remote Sensing).

Reese, H., Nilsson, M., Pahlén, T.G., Hagner, O., Joyce, S., Tingelöf, U., Egberth, M.,
Olsson, H., 2003. Countrywide estimates of forest variables using satellite data and
field data from the National Forest Inventory. AMBIO J. Hum. Environ. 32 (8),
542–548. https://doi.org/10.1579/0044-7447-32.8.542.

Reif, M., Shafait, F., 2014. Efficient feature size reduction via predictive forward selec-
tion. Pattern Recogn. 47 (4), 1664–1673. https://doi.org/10.1016/j.patcog.2013.10.
009. (Elsevier).

Rokach, L., Maimon, O., 2007. Data mining with decision trees. In: World Scientific.
Series in Machine Perception and Artificial Intelligencehttps://doi.org/10.1142/
6604.

Rumelhart, D.E., McClelland, J.L., 1986. Parallel Distributed Processing: Explorations in
the Microstructure of Cognition. vol. 1 MIT Press.

Santoro, M., Beer, C., Cartus, O., Schmullius, C., Shvidenko, A., McCallum, I., Wegmüller,
U., Wiesmann, A., 2011. Retrieval of growing stock volume in boreal forest using
hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote
Sens. Environ. 115 (2), 490–507. https://doi.org/10.1016/j.rse.2010.09.018.
(Elsevier Inc.).

Solberg, S., Hansen, E.H., Gobakken, T., Næssset, E., Zahabu, E., 2017. Biomass and
InSAR height relationship in a dense tropical forest. Remote Sens. Environ. 192,
166–175.

Tokola, T., LeToan, T., v. Poncet, F., Tuominen, S., Holopainen, M., 2007. Forest re-
connaissance surveys: comparison of estimates based on simulated Terrasar, and
optical data. Photogramm. J. Finland 20 (2), 64–79.

Tomppo, E., Katila, M., Mäkisara, K., Peräsaari, J., 2014. The multi-source National Forest
Inventory of Finland — methods and results 2011. In: Working Papers of the Finnish
Forest Research Institute. vol. 319. http://urn.fi/URN:ISBN:978-951-40-2428-3.

Topaloǧlu, R.H., Sertel, E., Musaoǧlu, N., 2016. Assessment of classification accuracies of
Sentinel-2 and Landsat-8 data for land cover/use mapping. In: International Archives
of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives. vol. 41. pp. 1055–1059. https://doi.org/10.5194/isprsarchives-XLI-B8-
1055-2016. (July).

UNFCCC, 2014. Key Decisions Relevant for Reducing Emissions from Deforestation and
Forest Degradation in Developing Countries (REDD+). Decision booklet REDD+
UNFCCC secretariat (June 2014).

UNFCCC, 2016. Report of the Conference of the Parties on its twenty-first session, held in
Paris from 30 November to 13 December 2015. Addendum. Part two: Action taken by
the Conference of the Parties at its twenty-first session. http://unfccc.int/resource/
docs/2015/cop21/eng/10a01.pdf.

Varvia, P., Lähivaara, T., Maltamo, M., Packalen, P., Tokola, T., Seppänen, A., 2017.
Uncertainty quantification in ALS-based volume estimation. IEEE Trans. Geosci.
Remote Sens. 55 (3), 1671–1681.

Vincent, Pascalvincent P., Larochelle, Larocheh H., 2010. Stacked denoising auto-
encoders: learning useful representations in a deep network with a local denoising
criterion Pierre-Antoine Manzagol. J. Mach. Learn. Res. 11, 3371–3408. https://doi.

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

272

https://doi.org/10.1109/JSTARS.2013.2241018
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0010
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0010
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0010
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0010
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0015
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0015
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0015
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0015
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0020
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0020
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0020
https://doi.org/10.1016/S0004-3702(97)00063-5
https://doi.org/10.1016/S0004-3702(97)00063-5
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0030
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0035
https://doi.org/10.1080/2150704X.2017.1295479
https://doi.org/10.1080/2150704X.2017.1295479
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0045
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0045
https://doi.org/10.3390/s110707063
https://doi.org/10.1016/j.rse.2011.11.026
https://doi.org/10.1016/j.rse.2011.11.026
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5020
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5020
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5000
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5000
https://doi.org/10.1080/15481603.2017.1370169
https://doi.org/10.1080/15481603.2017.1370169
https://doi.org/10.14214/sf.1095
https://doi.org/10.14214/sf.1095
https://doi.org/10.1137/0715063
https://doi.org/10.1016/j.rse.2013.04.022
https://doi.org/10.1016/j.rse.2013.04.022
https://doi.org/10.1109/JSTARS.2013.2241020
https://doi.org/10.1109/JSTARS.2013.2241020
https://doi.org/10.1016/j.foreco.2011.08.035
https://doi.org/10.1016/j.foreco.2011.08.035
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0090
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0090
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0100
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0100
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0100
https://doi.org/10.3390/rs8030166
https://doi.org/10.3390/rs8030166
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5005
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5005
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.3390/rs5052257
https://doi.org/10.3390/rs5052257
https://doi.org/10.1080/01431168808954942
https://doi.org/10.1080/01431168808954942
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/j.rse.2017.03.021
https://doi.org/10.1016/j.rse.2017.03.021
https://doi.org/10.1016/J.RSE.2011.03.020
https://doi.org/10.1016/J.RSE.2011.03.020
https://doi.org/10.3390/rs40401004
https://doi.org/10.1016/j.foreco.2004.02.049
https://doi.org/10.1016/j.foreco.2004.02.049
https://doi.org/10.1111/j.1365-2486.2007.01463.x
https://doi.org/10.1111/j.1365-2486.2007.01463.x
https://doi.org/10.3390/rs8121014
https://doi.org/10.3390/rs8121014
https://doi.org/10.3390/rs8100869
https://doi.org/10.3390/rs8100869
https://doi.org/10.3390/rs8090736
https://doi.org/10.1080/02827581.2016.1220618
https://doi.org/10.1080/02827581.2016.1220618
https://doi.org/10.5589/m13-032
https://doi.org/10.5589/m13-032
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0170
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0170
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0170
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0170
https://doi.org/10.1579/0044-7447-32.8.542
https://doi.org/10.1016/j.patcog.2013.10.009
https://doi.org/10.1016/j.patcog.2013.10.009
https://doi.org/10.1142/6604
https://doi.org/10.1142/6604
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0190
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0190
https://doi.org/10.1016/j.rse.2010.09.018
https://doi.org/10.1016/j.rse.2010.09.018
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0200
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0200
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0200
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0210
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0210
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0210
http://urn.fi/URN:ISBN:978-951-40-2428-3
https://doi.org/10.5194/isprsarchives-XLI-B8-1055-2016
https://doi.org/10.5194/isprsarchives-XLI-B8-1055-2016
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf201901271216331822
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf201901271216331822
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf201901271216331822
http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf
http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0225
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0225
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0225
https://doi.org/10.1111/1467-8535.00290


org/10.1111/1467-8535.00290.
Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E., 2012. Remote

sensing of environment opening the archive: how free data has enabled the science
and monitoring promise of Landsat. Remote Sens. Environ. 122, 2–10. https://doi.
org/10.1016/j.rse.2012.01.010. (Elsevier B.V.).

Ylitalo, E. (Ed.), 2012. Finnish Statistical Yearbook of Forestry 2012. Finnish Forest
Research Institute (Metla), pp. 454 s ISBN 978-951-40-2392-7, ISBN 978-951-40-

2391-0.
Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., Yu, S., 2016. Examining spectral reflectance

saturation in Landsat imagery and corresponding solutions to improve forest
aboveground biomass estimation. Remote Sens. 8 (6), 469.

Zhu, Z., Woodcock, C.E., 2014. Continuous change detection and classification of land
cover using all available Landsat data. Remote Sens. Environ. 144, 152–171. https://
doi.org/10.1016/J.RSE.2014.01.011. (Elsevier).

H. Astola et al. Remote Sensing of Environment 223 (2019) 257–273

273

https://doi.org/10.1111/1467-8535.00290
https://doi.org/10.1016/j.rse.2012.01.010
https://doi.org/10.1016/j.rse.2012.01.010
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5025
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5025
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf5025
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0240
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0240
http://refhub.elsevier.com/S0034-4257(19)30025-2/rf0240
https://doi.org/10.1016/J.RSE.2014.01.011
https://doi.org/10.1016/J.RSE.2014.01.011

	Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region
	Introduction
	Materials
	Test site
	Reference data
	Satellite data

	Methods
	Test setups
	Forest variable modelling and feature selection
	Implementation of the modelling methods

	Results
	Best predictive image bands
	Prediction performance
	Models using all spectral bands
	Comparison of the different test setups


	Discussion
	Conclusions
	Acknowledgements
	The RMSE% and R2 values of the different modelling test setups for sixteen forest variables
	Correlation matrix between satellite image channels and forest variables
	References




