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Improved Semisupervised UNet Deep Learning
Model for Forest Height Mapping With Satellite
SAR and Optical Data

Shaojia Ge ", Hong Gu, Weimin Su, Jaan Praks

Abstract—In this study, we introduce an improved semisuper-
vised deep learning approach, and demonstrate its suitability for
modeling the relationship between forest structural parameters
and satellite remote sensing imagery and producing forest maps.
The improved approach is based on a popular UNet model, mod-
ified and fine-tuned to improve the forest parameter prediction
performance. Within the improved model, squeeze-and-excitation
blocks are embedded to recalibrate the multisource features via
retrieved channel-wise self-attention and a novel cross-pseudo re-
gression strategy is implemented to train the model in a semisu-
pervised way. The improvement imposes consistency learning on
two perturbed network branches: 1) generating regression pseudo-
reference; 2) expanding the dataset size. For demonstration, we
used satellite synthetic aperture radar (SAR) Sentinel-1 and multi-
spectral optical Sentinel-2 images as remote sensing data, comple-
mented with reference data represented by forest tree height as one
of the key forest structural variables. The study area is located in a
boreal forestland in Central Finland. Proposed approach showed
larger accuracy compared to traditional machine learning methods
such as random forests and boosting trees, and baseline UNet
model. Best accuracy figures for forest tree height were achieved
with combined SAR and optical imagery and were as small as
24.1% root-mean-square error (RMSE) on pixel-level and 15.4%
RMSE on forest stand level.

Index Terms—Deep learning (DL), regression, semisupervised,
Sentinel-1, Sentinel-2, synthetic aperture radar (SAR), UNet.

I. INTRODUCTION

NCREASINGLY important climate change monitoring re-
quires precise methods for forest carbon assessment using
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earth observation (EO) sensors [1]. Forests are essential in
maintaining healthy ecosystem interaction and biodiversity on
earth and have an important role in tackling climate change since
forests can quickly restore carbon stock on ground. Presently,
the forest carbon stock and its change are typically estimated
through inventories of forest structural variables [2], which still
involves large amount of manual labour. Thus, accurate, timely,
and reliable approaches for retrieval of forest structural variables
from EO data (such as forest tree height, growing stock volume,
tree age and density, tree species, and forest above ground
biomass) are needed. Updated information on forest resources
is also necessary for forest management purposes.

Satellite remote sensing combined with in sifu forest measure-
ments can be considered an effective means for producing forest
attribute maps and forest estimates on various areal levels [3].
Suitable EO datasets include satellite optical and imaging radar
data, augmented by forest plot or forest stand-level reference
measurements. Airborne laser scanning data are costly and
rarely available over large areas, while usability of remotely
sensed optical datasets are often affected by cloudiness and haze.
Synthetic aperture radar (SAR) data can be considered suitable
over boreal regions and other regions with frequent cloud cover
or poor light conditions. If both SAR and optical datasets are
available, it seems useful to combine data sources within model-
ing approaches to take advantage of their recognized synergistic
potential [4]. Traditionally, physics model based approaches
and machine learning models were found suitable for modeling
relationships between EO measurements and forest structural
variables. SAR data approaches particularly using L, C, and
X-band satellite data were well elaborated for forest structural
variable prediction [5]. Depending on data source used, for-
est mapping has been done using inversion of semiempirical
and physics-based models, statistical, and machine learning
approaches [6]-[12]. Utility of various data sources, potential
of combined use of SAR and optical data, as well as different
regression approaches were studied. However, forest parameter
prediction accuracy is still relatively low to meet forest users’
needs. Common remaining challenges include lack of high
quality or representative models for training, poor performance
of pixel-based models that do not take into account spatial con-
text, lack of model flexibility. This requires introducing hand-
engineered features to capture spatial dependencies. A possible
alternative is using deep learning (DL) models like convolutional
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neural network (CNN) that can capture both spectral and spatial
dependencies within the EO images.

Since recently, DL models have been increasingly used in
EO applications [13], [14], indicating potential for analyzing
complex structured vegetation such as boreal forests. Despite
promising results for classification tasks, DL has not yet been
used extensively for regression modeling tasks in environmen-
tal studies [15]. Several prior studies focusing on prediction
of continuous forest variables were reported [16]-[22]. One
example is the use of CNN with Sentinel-2 data for pre-
diction of forest tree height in Switzerland and Gabon [22],
with average root-mean-squared errors (RMSEs) of 3.4 m
and 5.6 m, respectively. Stacked sparse autoencoders were
used to predict above ground-biomass in mixed broadleaved
and coniferous forests of China, outperforming several tradi-
tional regression approaches [20], [21]. In another study, the
Chimera predictor suitable for forest mapping also outperformed
random forest and support vector machines in all regression
tasks.

To perform well, DL models need to be trained using large
amount of reference (ground truth) data, that is either com-
monly not available or imperfect/inaccurate in forest studies.
In this context, transfer learning and semisupervised learning
have become appealing options [23]-[27]. Transfer learning
entails adapting a pretrained model and fine-tuning it using
available sample of training data. One of such approaches has
been recently demonstrated with optical Sentinel-2 data over
boreal forest in Finland [19]. Semisupervised learning, in order
to improve modeling, concentrates on improving the use of un-
labeled training data. In the context of semisupervised learning,
two primary approaches are considered suitable: 1) self-training
[28]-[30], that a model is firstly pretrained, followed by using
the model to generate so-called pseudo-labels, and finally retrain
the model with all data including true labels and pseudo-labels;
2) consistency learning [31], [32], that the idea is to apply
different transformations on unlabeled training data, encourage
the model to produce similar outputs in spite of the different
transformation, and in this way to lead the model learning a
more compact data representation.

Inspired by the approach of Chen et al. [33], we adopt in
this study a new strategy called cross-pseudo regression (CPR),
which brings the two options together and allows to train the
model with unlabeled data in a semisupervised way. To our
knowledge, this is the first attempt to introduce pseudo ground
truth and consistency learning into regression modeling in the
context of satellite EO based forest inventory.

In this study, we focus on forest tree height as one of the
key forest structural variables, and demonstrate the utility of
developed approaches in boreal forest environment. We expect
the model can be suitable for capturing relationships between
EO data and other forest variables (e.g., growing stock volume,
above ground biomass, and stem volume) as well, also in differ-
ent forest biomes. For demonstrating our approach, we will use
free European Copernicus programme Sentinel-1 imaging radar
satellite and Sentinel-2 optical satellite datasets over a boreal
forest test site in Finland.

Our primary contributions can be summarized as follows.
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1) We introduce an improved DL model based on UNet [34],
which is suitable for predicting forest attributes and pro-
ducing forest maps.

2) The proposed model introduces two key modifications:
1) feature recalibration based on modified squeeze-and-
excitation (SE) channel-attention mechanism; 2) CPR
strategy.

3) For validation purposes, performance of the developed
model is compared to basic UNet model, several pop-
ular machine learning approaches as well as alternative
semisupervised DL models in predicting forest tree height
using SAR Sentinel-1 and optical Sentinel-2 data.

4) To the best of our knowledge, this is the first study utilizing
DL models for wall-to-wall prediction of forest structural
variables using time series of Sentinel-1 SAR images, or
combined optical and SAR imagery.

II. IMPROVED SEMISUPERVISED UNET FRAMEWORK

We selected UNet [34], a variant of fully convolutional net-
work, as a baseline DL model. The UNet model was originally
proposed for biomedical image segmentation, and is presently
often used in various semantic segmentation tasks [35]—[38].

A. Basic UNet Model

The basic UNet (also known as Vanilla UNet) uses convo-
lutional network to extract features [34]. Unlike CNN [39],
the fully convolutional and skip-connection structures allow
UNet to extract deeper features of input data, maintain good
fusion ability at all levels, while keeping the feature map size
unchanged [34]. This suggests it can be naturally applied for
pixel-level classification and regression tasks.

The overall structure of UNet is symmetric, similar to
encoder—decoder [34]. The encoder is responsible for feature
extraction, and the decoder restores the feature map to the
original size. The structure of UNet is identical to representation
in Fig. 1 if SE blocks are removed. Each box in the UNet
indicates a feature map, where the corresponding size is denoted
near the boxes. The blue arrow indicates a double-convolution
structure, each one is consisted by cascading a 2-D convolution,
batch-normalization and ReLu activation. It is the core unit of
UNet. The 2-D convolution captures features at current level
and an activation layer projects the obtained feature map to a
nonlinear feature space.

The pink-color arrows indicate pooling operations. A 2 x 2
pooling would downscale the original feature map to half of
its spatial size, as a result expanding the receptive field for the
subsequent double-convolution. As the model goes deeper, the
larger receptive field means more global/implicit information of
the input data can be captured.

In decoder, the green arrow indicates the upsampling oper-
ation to restore the size of feature maps. It is often achieved
by bilinear interpolation or deconvolution. Although the above-
mentioned pooling operation is beneficial to obtain different
levels of features, it will also discard some detailed information.
Here, by applying skip-connection, represented by gray arrows,
the shallow feature maps are concatenated to deep features
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Fig. 1. SeUNet model for regression task with embedded SE blocks.

recovered from upsampling. The final light blue arrow represents
a 1 x 1 convolution projection function, which maps the last
feature map to the target space. The 1 x 1 convolution kernel
size preserves the spatial size and enables pixel-level prediction.

B. Modified Models

The basic UNet model has good image modeling capabil-
ity [35], [36], but due to the characteristics of remote sensing
task, especially the forest height regression, certain modifi-
cations are necessary. Here we improve the basic model by
introducing two key modifications: 1) feature recalibration based
on modified SE channel-attention block [40]; 2) semisupervised
CPR strategy. We denote these modified models as SeUNet and
CPrSeUNet, respectively.

1) SeUNet Model: The convolution operation can acquire
and integrate spatial-wise and channel-wise features at the same
time. However, the channel dependency of input data needs more
exploitation. Firstly, the observation span of satellite image time
series often covers a whole year or even longer, the quality of
satellite images varies a lot due to the influence of weather
or other observation conditions. There are both importance
differences and information redundancy among timestamps,
which contribute differently to the prediction of forest height.
Secondly, although multisensor data increase the feature space,
their sensitivity to forest height varies depending on specific
wavelength and scattering mechanism.

For these two reasons, we modify the basic UNet model by
embedding a modified SE block [40] within SeUNet as shown
in Fig. 1. The SE block learns channel-wise self-attention by
training [40]. Then, channels of original tensor are scaled and
recalibrated based on the attention weights.
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Fig. 2. SE block for channel recalibration within the SeUNet model.

The SE block shown in detail in Fig. 2 operates as follows.
Let the dimension of input tensor be C' x H x W, where C is
the number of channels, and H and W denote the height and
width of a certain channel, respectively. SE block operates in
two steps: 1) squeeze 2) excitation.

Squeeze process compresses the original tensor U spatially
from C'x H x W to C' x 1 x 1. It is often accomplished by
global average pooling (GAP). The global spatial feature is dis-
tilled for each channel along the channel dimension. In details,
let U . denote the feature map of Channel ¢, and Fg,, denote the
GAP function, the squeeze process can be described in

1 H W
Ze = Fgap (Uc) = m ZZUC(ZJ)

i=1 j=1

ey

Excitation process, on the other hand, introduces the concept
of gates to obtain the dependence between channels [40]. Instead
of two fully-connected layers in classic SE block, here we
use two projection functions (1 x 1 convolution) to implicitly
obtain interchannel self-attention. These two layers of projection
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functions are essentially a bottleneck-structure, in which the
nonlinear dependencies are expressed by dimensionality reduc-
tion. Compared to the original fully connected layers, projection
function greatly reduces the amount of parameters and computa-
tions without sacrificing the model capability. Excitation process
can be expressed mathematically by

s =Fex(z) =0 (W3 (W;2)) 2)

where z and s are the vectors before and after excitation, respec-
tively, W, and W5 are two projection functions, ¢ is the relu
activation function, and o is sigmoid function. The dimension
of channel z is first downscaled to (C'/2) x 1 x 1 by projection
function Wy, followed by a relu layer § introducing the nonlin-
earity to the channel-attention. The second Wy then recovers
the channel-attention to its original channel size C' x 1 x 1. At
last, a sigmoid layer o projects the channel-attention to the range
(0,1) and makes them as the weights of channels.

For a certain Channel c, the original feature map U .. is scaled
by channel weight s, as shown in (3). In this manner, the whole
input tensor is recalibrated according to the channel-attention

V.= Fscale (U07 Sc) =s.U.. €))

Within each SE block, the bottleneck ratio of excitation is set
to half of the original channel number. SE block would perform
feature recalibration at not only the input level but also at each
skip connection. When SE block is embedded into input level,
channel-attention essentially indicates the significance of input
images, which gives us another insight of the feature selection.
Considering the relatively small scale of the training dataset, Se-
UNet is stacked with only three layers. As the model goes deeper,
the numbers of convolution kernels of double-convolution are set
to 128, 256, and 512, respectively, with the convolution kernel
size of 3 x 3, stride of 1, and padding of 1. Before each skip
connection, another SE module is used to recalibrate the feature
map obtained by convolution. We also introduce a 2-D-dropout
to the deepest layer to bring more regularization to the feature
map. At last, the deconvolution is selected as our upsampling
operation. In order to reduce the tessellation effect caused by
the deconvolution, the deconvolution kernel size is 2, the same
as the stride size.

2) CPrSeUNet Model: DL models require significant
amount of data for successful training, while lack of ground
truth data typical for EO-based forest inventory can negatively
affect prediction performance of modeling approaches. Here,
we propose the CPR strategy to address this issue. Both labeled
and unlabeled data are utilized to train the model. Cross-pseudo
supervision (CPS) has been proposed by [33] for semantic
segmentation task. To adopt CPS into pixel-level prediction of a
continuous forest structural attribute, we use a regression head
instead of the segmentation head. Another difference lays within
the training batch formation. Considering the mixed-up labeled
and unlabeled patches for training, the unlabeled patches are
designed to have a higher probability of appearance within early
training epochs. Similar to two-step training, where unlabeled
patches are used for pretraining and the labeled ones for fine-
tuning, this improves the network convergence, especially within
final training epochs. Compared to using only labeled training
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data, the suggested method essentially augments the original
dataset and further improves the performance of the model. We
call this hybrid model a CPrSeUNet model. Further, we describe
the approach in more detail.

Firstly, we apply the concept of consistency learning on
two perturbed network branches. Both branches have the same
structure but vary by initialization. We encourage the model
to give similar predictions, even though some perturbations
are introduced, which means the representative capability of the
model is compact enough to hold the perturbations. Given the
two network branches as M; and Ms, when fed into the same
input X, the two branches can be denoted as

P, = f(X;6y)
Py = f(X;60,) 4

where 01 and 65 denote the initial weights of M; and Mo,
respectively, P; and P> denote the regression results, which
in our case are pixel-level forest height predicted by SeUNets.

The flowchart is shown in Fig. 3, where solid arrow represents
the forward computation, and dash arrows represent the flow
of supervision information. We take all the data as the inputs,
including both labeled and unlabeled. When the same input data
are fed into two perturbed branches, each branch yields its own
regression results Py and Ps.

We first ignore all label information, and treat all data as
unlabeled. We take the regression result of one branch as
the pseudo-reference of the other. That is, P; serves as the
pseudo-reference of branch M, and vice versa. In this way,
both network branches can be updated by back-propagation.
We select pixel-wise the mean-squared error (MSE) between
the regression results and reference as our basic loss

Loss(Y,Y) = (yi — 0s)° (5)
1

S|

n
i=
where Y and Y are the prediction and reference, respectively, y;
is the ¢th element in Y, and n is the total number of the elements.
Considering P; and P, have the same number of pixels, the
joint loss of both branches, which is named as cross-pseudo
loss, can be represented in

EC = Loss (PQ,Pl) +LOSS(P17P2). (6)

Then, the label information is taken into consideration. For
labeled part, we normally use its own ground truth R as the refer-
ence. The supervised joint loss of this part of data is formulated
as

{5 = Loss (P, R) + Loss (P, R) . (7
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Finally, we summarize all the losses with both include- and
exclude-label information as

o2 (w)’ ®)

j 1

C="0s+rcle+ Ay

where A, is defined as the tradeoff weight to control the impact
of cross-pseudo loss. According to the cross-validation, we set
Ac as 0.5 in our model. To mitigate the overfitting, a weight
decay (l> penalty) item is also introduced as a regularization
to the model weights, where w; is the jth weight, n,, is the
total number of weights, and the strength of regularization is
controlled by A,

CPR strategy helps train the model in a semisupervised way,
unlabeled data is successfully mixed up with labeled on training
stage, as a result improving the capability of the model. As
shown in Fig. 4, our entire model is composed of two perturbed
SeUNet branches with the same structure but differing only in
initialization. On the prediction stage, we only need to extract
one branch as our main model for the regression task without
any further fine-tuning.

III. MATERIALS AND METHODS

In this article, various combinations of EO images represented
by time series of Sentinel-1 SAR images and Sentinel-2 image
bands are used for forest height prediction with baseline UNet
and modified DL models, as well as with other established
machine learning approaches. The baseline and developed mod-
els are described in Section III-B. The main goal of the study
was to develop and fine-tune a reliable and highly accurate DL
model for predicting forest tree height using multidimensional
EO dataset, and validate its performance against other modeling
approaches.

The overall approach is illustrated in Fig. 5. SAR and opti-
cal images and reference data are described in Section III-A.
Reference data are split into geographically nonoverlaping sub-
sets for model training and validation, and testing (accuracy
assessment). Details of experimental approach are described in
Section III-C.

SeUNet 1

—_—
Results
- Analysis

CPrSeUNet model showing two parallel SeUNet models in the context of semisupervised regression.
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A. Study Site, Satellite SAR, Optical and Reference Data

The study site is located in Central Finland in the vicinity
of Hyytiild forestry station and occupies an area of 2500 km?.
The area represents a typical mixed boreal forestland with forest
growing stock volume up to 500 m3 /ha and 170 m? /ha on av-
erage. The location of our study site and natural color composite
of Sentinel-2 image is shown in Fig. 6

SAR data are represented by a time series of Sentinel-1 images
acquired during 2015. Altogether 27 dual-pol Sentinel-1 A
images available as ground range detected products were used.
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Fig. 6.  Study site location in Finland (left image), optical Sentinel-2 scene (centre), and reference ALS data with sampling design (left image).

The images were radiometrically terrain-flattened and orthorec-
tified with in-house software using local digital elevation model
available from National Land Survey of Finland [41], [42]. Final
preprocessed images were in gamma-naught format [43].

Satellite optical data were represented by an ESA (European
Space Agency) Sentinel-2 image acquired in August 2015. The
Level-2A surface reflectance product systematically generated
by ESA and distributed in tiles of 100 x 100 km? was used.
The multispectral instrument on board Sentinel-2 satellites has
13 spectral bands with 10-m (four bands), 20-m (six bands), and
60-m (three bands) spatial resolutions. Only 10 m bands were
used in the experiments, altogether four bands.

Airborne laser scanning (ALS) data collected by National
Land Survey of Finland during summer of 2015 were used as a
reference. Forest heights were computed from ALS point clouds
as average elevation of forest classified points over ground
layer within 20x20m? pixel cells. In this way, a wall-to-wall
coverage of the test site with the reference height information
was obtained. Forest stand-mask from the Finnish Forest Centre
was used to calculate stand-level estimates of tree height from
the forest height map.

B. Baseline Models

The utility of developed DL models described in Section II is
demonstrated using comparison with several conventional ma-
chine learning (ML) approaches popular in satellite-based forest
inventory [5], as well as the baseline UNet model. Three ML
models are considered: 1) Multiple Linear Regression (MLR),
random forest (RF), and Light Gradient Boosting Machine
(LightGBM or LGBM) [44]. MLR and RF have been widely
used in forest remote sensing utilizing EO data [4]. LightGBM
is a modern Gradient Boosting Decision Tree tool developed by
Microsoft with demonstrated advantages in regression tasks. All
these regression models operate on pixel-level.

For MLR, the data processing pipeline also includes principal
component analysis (PCA) to reduce the number of independent
input variables in regression models. When the size of the
input feature set is large (for example 54 features of Sentinel-1
dataset), only ten primary components are extracted by PCA
before MLR regression.

In RF and LightGBM, feature selection mechanism is already
built in the model. Additionally, model fine-tuning based on
five-fold cross validation is performed to achieve better predic-
tion accuracy. Considering the large number of training samples,
we randomly select more than 10% as its fine-tuning subset, in
order to alleviate the computational workload. The exhaustive
hyperparameter search is conducted for 100 trials using Optuna,
an automatic hyperparameter optimization framework.

To the best of our knowledge, the proposed CPR strategy is
the first example of using semisupervised learning for forest
variable prediction, tree height in our study case. To estimate
its potential, two well-known semisupervised strategies pre-
viously used for segmentation/change-detection [27], [45] are
converted to regression task as additional baseline models: 1)
reconstruction-based two-step training; 2) Siamese-network-
based consistency learning. To make the comparison fair, both
strategies use SeUNet as their backbone model, similar to the
proposed CPrSeUNet. We further call these models Rec-SeUNet
and Sia-SeUNet. They both consist of two training steps: 1)
pretraining with unlabeled data; 2) fine-tuning with labeled
training data. The difference mainly lies within the pretraining
procedure.

In Rec-SeUNet, a reconstruction head is firstly placed on top
of the backbone model, and the model gets pretrained by means
of reconstructing the original unlabeled inputs. Specifically,
given X denotes the input tensor and f denotes the model,
the reconstruction can be denoted as X = f(X;6), where 0
is the model parameter. The input data itself are used as the
reference, and the pixel-wise MSE (X, X ) is calculated as the
loss during model optimization. In this unsupervised manner,
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the pretrained backbone is assumed to learn the representations
of the input data [27]. Then on the second step, we fine-tune the
model by replacing the reconstruction head with a regression
head. Not only the original labeled, but also the pseudo-labeled
data are used in the fine-tuning. The pseudolabels are generated
from unlabeled datasets iteratively in each epoch.

In Sia-SeUNet, we leverage the pretraining by using Siamese
network [46]. It consists of two subnets that share the same
structure and parameters. Unlabeled input data X firstly undergo
heavy pixel-wise augmented (e.g., GaussianNoise, Blur). Then,
X and the augmented data X, are fed into different subsets.
Let y, = f(X;0) and yy = f(Xaqug; ) denote the predic-
tions of the corresponding subnets. We pretrain the subnets by
minimizing the pixel-wise MSE(y4, ¥=2), which is also known
as consistency loss according to consistency learning concept. In
this way, a more compact representation of the data is obtained.
On the following fine-tuning step, we extract one of the subnets
as the prediction model, and use the (labeled) training data to
fine-tune it.

C. Experimental Setup

In this section, we describe the preprocessing of EO data for
training, validation, and testing, and give detail. Preprocessed
Sentinel-1 images are stacked together with Sentinel-2 optical
image bands to form the input EO raster image stack.

1) Training, Validation, and Testing Datasets: The orig-
inal SAR and optical images were firstly cropped into
128 pxx128 px image patches. Nonforested regions were
masked out by setting both feature values and predictor values
to zero. The cropping is performed using a sliding window
with the stride of 128 px so that cropped image patches have
no spatial overlap. To avoid excessive proportion of nonforested
area within each patch, a threshold value of 0.2 was set for forest
cover proportion, with less-forested areas removed from further
analysis.

In such a way, altogether 340 nonoverlapping patches were
cropped from the original image data stack. Further, these
patches were split into three subsets using random sampling,
as shown in Fig. 6 The areas shown in pink (170 image
patches) were set aside for testing, the yellow colored areas (34
patches) were reserved for validation, while remaining areas
(136 patches) were targeted for training. Thus, the ratio of
training and validation areas to testing areas is approximately
1:1.

However, to make better use of the spatial context at the bor-
ders of adjacent training patches, we did not use the mentioned
136 training patches directly, but performed dense cropping over
areas these patches occupy. All other areas were masked out. The
dense cropping was performed using the same 128 px <128 px
sliding window but with a smaller stride of 64 px. This recrop-
ping can be in fact considered as a kind of data augmentation:
spatial shifting. After applying forest-cover threshold of 0.2 and
additional augmentations, such as image rotation and flipping,
the final number of training patches was 716.

Denoting the dimensions of a dataset as N x C' x H x W,
where C' is the quantity of channels, H and W are the height
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and width of each patch, respectively, and N is the num-
ber of patches, we have C' =58, H =W =128, and N €
{716, 34,170} for training, validation, and testing subsets, re-
spectively.

For pixel-based approaches, such as MLR, RF, and LGBM,
pixel-wise feature vectors were compiled from areas corre-
sponding to each subset. Specifically, denoting the dimensions
of asubsetas IV x C, we obtained C' = 58, N = 1, 882, 330 for
training and validation subset, N = 1,778, 777 for testing.

2) Experimental Implementation: Our experimental plat-
form was a 64-bit windows 2012 server, with a single GPU
(NVIDIA Tesla P40) and 32 GB RAM. Our model was built
in Python 3.8 with PyTorch 1.9.0 as its backend. The general
processing flowchart is shown in Fig. 5. We firstly train the
model in a semisupervised way. Regarding the loss calculation,
the tradeoff weight 1. was set as 0.5 and the weight decay was
le~*. The whole model is trained by using two separate Adam
optimizers on each branch. The initial learning rate was set as
5e¢~4, while a cosine annealing schedule was used to adjust the
learning rate during the training. With the batch size of ten,
we ran the training stage for 500 epochs, updating the model
checkpoint to a lower validation loss. On the testing stage, we
extracted one branch (that is M) from the final checkpoint as
our final model, and applied it for the forest height prediction
on testing data set followed by accuracy assessment of produced
forest height map.

D. Accuracy Assessment

Accuracy assessment of the model predictions is performed
on pixel level as well as on stand level between the predictions
and the reference, using the following equations:

>, (yi — 9:)°

RMSE = )
n

RMSE% = RJ\/{SE -100% (10)
n

BIAS — Zz (yi - yz) (12)
n

RQ —1_ SSres —1-_ Ei (yl - gz)2 (13)

5 St > (yi — %)’

where y; and ¢; are model predictions of forest height and
measured values from the reference forest inventory data, re-
spectively, and n is the total number of measurements.

IV. RESULTS AND DISCUSSION

Here, we perform assessment of relative performance of vari-
ous forest tree height prediction methods and models, as well as
on comparing added value of imaging radar and optical datasets.
Further, we report and analyze obtained results with respect to
these two primary aspects.
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Fig. 7.
Sentinel-2 image).

A. Model Prediction Performance

Performance of studied models with both optical Sentinel-
2 data and multitemporal Sentinel-1 data is illustrated with
scatterplots shown in Fig. 7 for pixel-level predictions and in
Fig. 8 for stand-level predictions. The quantitative performance
is summarized in Tables I and II, respectively. An example of
patch-level prediction within 2.56 km x2.56 km area for various
models is shown along with the reference data in Fig. 9.

Dependence of predicted versus reference forest heights on map unit (pixel) level for various EO datasets (S1 = ESA Sentinel-1 time series, S2 = ESA

1) Relative Performance of Different Datasets in Forest Vari-
able Prediction and Optimal Data Fusion: For Sentinel-1-based
predictions, only time series results are shown, that is when all
27 images are used. Performance of methods with single SAR
images were checked only with selected methods (MLR and
RF), and was poorer than with the time series, ranging from
38.8 t0 40.7% when MLR was applied for tree height prediction
using individual SAR images, and 38.3-40.9% with RF. Best
prediction was achieved with Sentinel-1 image acquired on
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Fig. 8. Dependence of predicted versus reference forest heights on forest stand-level for various ML and DL models using combined SAR and optical datasets

(multitemporal Sentinel-1 and Sentinel-2 images).

TABLE I
ACCURACY ASSESSMENT USING PIXEL-LEVEL DATA

RMSE,m RMSE% MAE Bias RZ?
Sentinel-1 time series
MLR 3.72 33.28 2.95 0.00 0.33
RF 3.63 32.50 2.89 0.01 036
LGBM 3.58 32.08 2.81 -0.01 0.38
UNet 3.09 27.68 2.36 0.06 0.54
SeUNet 3.03 27.14 229 -0.13 0.56
CPrSeUNet 3.02 27.03 2.29 0.05 0.56
Sentinel-2
MLR 3.89 34.80 3.08 0.01 0.27
RF 3.77 33.79 2.99 0.03 0.31
LGBM 3.75 33.61 2.98 0.02 0.32
UNet 3.12 27.90 236  -0.05 053
SeUNet 3.04 27.21 229 -0.12 0.55
CPrSeUNet 3.01 26.98 2.26 0.11  0.56
Sentinel-1 time series and Sentinel-2
MLR 3.58 32.04 279 -0.03 038
RF 3.40 30.44 2.66 0.01 044
LGBM 3.36 30.09 2.61 -0.02 045
UNet 2.88 25.76 2.14  -0.17 0.60
SeUNet 2.79 25.00 2.07 -0.02 0.62
CPrSeUNet 2.70 24.14 196 -0.07 0.65

2015/03/02, and the worst prediction with image acquired on
2015/05/13. Performance improved as more images were used.
This agrees well with published literature, e.g., [5] and [47].
Accuracy of Sentinel-2-based predictions suggests better suit-
ability of Sentinel-2 image compared to a single Sentinel-
1 SAR image, but proved somewhat inferior compared to
predictions based on Sentinel-1 time series. Generally, collecting

TABLE I
ACCURACY ASSESSMENT USING STAND-LEVEL DATA

RMSE,m RMSE% MAE Bias RZ?
Sentinel-1 time series
MLR 2.53 22.66 2.01 0.06 045
RF 2.51 22.49 2.01 0.05 046
LGBM 2.40 21.49 1.90 0.04 0.1
UNet 2.09 18.76 1.60 0.07  0.62
SeUNet 2.03 18.23 1.53  -0.10 0.64
CPrSeUNet 2.02 18.10 1.53 0.03  0.65
Sentinel-2
MLR 2.72 24.35 2.16 -0.03 0.37
RF 2.55 22.80 2.02 -0.02 044
LGBM 2.55 22.81 2.02 -0.03 044
UNet 2.13 19.09 1.62 -0.01 0.61
SeUNet 2.07 18.50 1.56  -0.09 0.63
CPrSeUNet 2.03 18.15 1.52 0.09  0.65
Sentinel-1 time series and Sentinel-2
MLR 241 21.60 1.88 -0.00 0.50
RF 2.27 20.33 1.78 0.01  0.56
LGBM 2.21 19.78 1.72 -0.00 0.58
UNet 1.90 17.06 141 -0.13  0.69
SeUNet 1.82 16.30 1.34 0.01 0.72
CPrSeUNet 1.72 15.38 125 -0.03 0.75

Sentinel-1 time series requires long observation periods, how-
ever Sentinel-2 data can be of even smaller availability, as in
certain years it was hard to collect suitable optical images [48],
something that can be improved in future with the help of
smallsats. When both SAR and optical datasets were used, all
models have shown improvement compared to using only one
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Fig. 10. Dependence of predicted versus reference forest heights on forest stand-level for semisupervised methods using combined SAR and optical datasets

(multitemporal Sentinel-1 and Sentinel-2 images).

source of EO data, reaching 24% RMSE in the best case with
CPrSeUNet model.

2) DL Model Versus Conventional ML: Developed CPrSe-
UNet model provided more accurate predictions than base-
line UNet and SeUNet models. Generally DL models that ac-
count for spatial context in addition to spectral features were
more accurate than pixel-based approaches, with improvement
of some 6-7% in RMSE and much higher R2. Improved
performance of proposed CPrSeUNet can be attributed to
channel-wise self-calibration and expanded dataset size due to
CPR approach.

3) Performance Versus Semi-Supervised Methods: Here, we
compare the proposed CPrSeUNet model versus two other
semisupervised approaches, as well as versus basic SeUNet
without self-supervision. The performance metrics are gathered

in Table III and scatter plots are shown in Fig. 10. For all studied
models, semisupervised methods provide better results over the
backbone SeUNet, indicating that semisupervision has potential
in improving prediction accuracy of pixel-wise forest variable
regression. However, the improvements of Rec-SeUNet and
Sia-SeUNet are relatively modest compared to basic SeUNet
model. Predictions by Sia-SeUNet are slightly more accurate
than Rec-SeUNet at stand level. The possible reason is the
heavy augmentation before consistency learning can better han-
dle heterogeneous pixels, thus improve the accuracy within
stands. However, this perturbation depends on the choice of
pixel-wise augmentation algorithm, and several trials are typ-
ically necessary to get optimal performance. Combining both
pseudo-labels and consistency learning simultaneously within
one model, CPrSeUNet shows the best performance of 15.38%
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TABLE III
ACCURACY ASSESSMENT OF SEMISUPERVISED METHODS

Pixel-level Stand-level

RMSE,m RMSE% R? | RMSE,m RMSE% R?

SeUNet 2.79 25.00 0.62 1.82 16.30 0.72
Rec-SeUNet 277 2477 0.63 1.79 16.07 0.72
Sia-SeUNet 2.77 24.80 0.63 1.78 15.98 0.73
CPrSeUNet 2.70 24.14 0.65 1.72 15.38 0.75

at stand-level, as well as the highest R2, as shown in Table I and
Fig. 10. Noteworthy, in CPrSeUNet the perturbation is applied
for initialization of model branches, unlike manual augmenta-
tion required in the Sia-SeUNet case.

B. Comparison to Similar Work

Obtained results compare favourably to previous studies on
forest height prediction. In boreal region, reported forest height
accuracies with Sentinel-2 and Landsat data were 35-60%
RMSE [19], [49], while proposed DL model reached as small
as 24% RMSE on plot level and 15.4% on stand level. Obtained
predictions with ML models and Sentinel-2 data are within
the same accuracy range as in recent published studies using
Sentinel-2 and Landsat [50], while our predictions using DL
models are much more accurate. There is relatively limited
literature using SAR data for forest height predictions, with those
normally done on stand level, but our obtained stand-level tree
height predictions are at the same accuracy level or even better
than reported retrievals with TanDEM-X interferometric SAR
data deemed much more suitable for vertical forest structure
retrieval [51]-[53]. To the best of our knowledge, obtained
accuracy levels of 15-17% RMSE for boreal forest using DL
models and combined SAR and optical data are superior to
earlier results reported in literature [4]. Obtained results natu-
rally encourage further studies with semisupervised DL models
for forest mapping using both similar EO datasets, as well as
more advanced imagery, such as polarimetric, interferometric,
and multifrequency SAR datasets, over boreal forests and other
forest biomes.

V. CONCLUSION

Our study demonstrated the potential for applying semisuper-
vised DL models for predicting forest height. A dedicated DL
model was developed and benchmarked with a representative
set of machine learning and DL methodologies over a boreal
forest site in Finland. Developed model is based on UNet and
can handle both SAR and optical datasets, and has shown im-
proved prediction accuracy compared to baseline approaches.
All studied approaches demonstrated advantage of combining
SAR and optical datasets to achieve better accuracy of forest
height retrieval. Future work will concentrate on introducing
other datasets particularly suitable for retrieving vertical struc-
ture of forests, such as Sentinel-1 repeat-pass interferometric
SAR and TanDEM-X bistatic inerferometric SAR datasets, as
well as studying other forest variables, such as growing stock
volume.
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V. DATA AVAILABILITY

EO data used in the study are available via IEEE Data
Port, while original Sentinel-1 and Sentinel-2 images are
freely available via Copernicus Open Hub. Reference data
are available from the corresponding author upon reasonable
request.
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