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Abstract: Our objective was to develop a method for the assessment of forest area and structural
variables for cases in which the availability of representative ground reference data is poor and these
data are not collected from the whole area of interest. We implemented two independent approaches
to the estimation of the forest variables of a European boreal forest: (i) the computation of wall-to-
wall estimates using moderate- to low-resolution VIIRS imagery from the Suomi NPP mission; and
(ii) the visual interpretation of plots of samples from very high resolution (VHR) satellite data obtained
via a two-stage design. Our focus was on the statistical comparison of forest resources at a country
or larger level. The study area was boreal forest ranging from Norway to the Ural Mountains in
Russia. We computed a seamless mosaic from 111 VIIRS images. From the mosaic, we computed
predictions for the forest area, growing stock volume, height of the dominating tree layer, proportion
of conifers and broadleaved trees, site fertility class, and leaf area index. The reference data for the
VIIRS imagery were national forest inventory (NFI)-based raster maps from Finland. The first stage
sample of VHR data included 42 images; of these, a second stage sample of 2690 plots was visually
interpreted for the same variables. The forest area prediction from VIIRS for the whole study area
was 1.2% higher than the VHR-based result. All other structural variable predictions using VIIRS
fitted within the 95% confidence intervals computed from the VHR sample except for estimates of
the main tree species groups, which were outside the limits. A comparison of VIIRS-based forest
area estimates using Finnish and Swedish NFI data indicated overestimations of 10.0% points and
4.6% points, whereas the total growing stock volumes were overestimated by 8% and underestimated
by 3.4%, respectively. The correlation coefficients between the VIIRS and VHR image predictions at
the 42 VHR image locations varied from 0.70 to 0.85. The VIIRS maps strongly averaged the local
predictions due to their coarse spatial resolutions. Based on our findings, the approach using two
independent estimations yielded similar figures for the central forest variables for the European
boreal forest. A model computed using reference data from a small part of the area of interest can
provide satisfactory predictions for a much larger area with a similar biome. Therefore, our concept
is applicable to the estimation and overall mapping of a forest area and central structural variables at
regional to national levels.

Keywords: forest; forest area; structural variables; sampling; accuracy assessment; Suomi NPP; VHR;
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1. Introduction

Concern for the sustainability of raw material supply, as well as ecological and carbon
cycle issues, requires the availability of information about forest area, biomass, species,
and other forest resources beyond the borders of individual countries [1–3]. Satellite
imagery, which is a globally available source of information, has been used for mapping and
monitoring forest cover as an explicit topic of interest or as part of land cover mapping [4,5].
The principal motivation in satellite-image-based surveys has been to monitor the forest
area, biomass and, to a lesser extent, the main species.

Forest area is the principal variable in forest inventories and land cover mapping. The
national forest inventories (NFIs) provide statistical information about forest area, structural
forest variables, and other forest ecosystem characteristics, such as site fertility. The NFIs
are usually based on the statistical sampling of ground plots, potentially supported by
remotely sensed image data. The sampling-based national forest inventories have been
conducted for more than 100 years in few countries, such as Finland [6]. They are, however,
expensive to conduct; consequently, the information may not be up to date. The pure
sampling-based inventories do not usually produce thematic wall-to-wall maps. However,
in some countries, such as the United States, Finland, and Sweden, satellite imagery and
NFI ground plots have been and are still being used to compute thematic map layers of
forest variables [7,8].

The NFI plot data are country-specific, and their access may be restricted, particularly
when permanent sample plots, which are becoming more common, are used. Other means
of deriving information about forests should be developed for surveys of wider areas.

The perspective of most forest-related projects that have utilized satellite images has
been to make maps of the forest cover instead of providing actual forest inventory data.
The map spatial resolution has ranged from 1 × 1 km2 to 10 × 10 m2 [4,5,9,10]. Most of
the maps have used optical data, but radar-based global forest/non-forest maps have also
been published [11,12]. Regional mapping has been reported, e.g., in [13,14]. Forest extent
predictions have varied greatly between global and continental maps made by different
research teams. The reasons for these differences are variable forest definitions, satellite data
sources, spatial resolutions, and image analysis methods which make their comparison
difficult [15]. For example, in a study comparing eight land cover classifications, the
coefficient of determination for the percentage of forest cover with the training data from
Google Earth varied from 0.53 to 0.81. The individual maps were combined to compute
a “best guess” map using visually interpreted samples from Google Earth [16]. Official
country statistics and sampled tracks of light detection and ranging (Lidar) have also been
used as calibrating data in mapping [17,18].

Groups of main tree species have been predicted from satellite data at beyond-country
extents, mainly in the context of general land cover mapping. A sophisticated approach
using a Landsat data cube, lower-resolution satellite imagery, and ensemble learning was
used to compute global land cover maps. These maps included three classes for species:
broadleaf, needle-leaf, and mixed forest. The average percentage of correctly classified land
cover classes of the 25 classes was 80.6% at the global level. Relatively high uncertainties
were reported for boreal tundra and boreal mountain systems [9]. In a boreal forest study
in Europe, cross-validation was used to test the uncertainty for three species groups:
coniferous, broadleaved trees, and mixed forest. The correct classification for these groups
varied between 60 and 70% [19]. The uncertainty was lower than with the Coordination of
Information on the Environment (CORINE) maps [20].

A growing stock volume map of the Nordic countries and European Russia was
computed by modeling the volume using ground plots and Landsat Thematic Mapper data
from Finland and extrapolating the model for cross-calibrated NOAA AVHRR imagery.
Using data obtained from the national forest inventory, the models were assessed using
growing stock volume data from 20 forest districts in Finland. The best model used red
band only and showed a correlation of 0.98 with the forestry district volumes. No data for
assessing uncertainty were available for Russia. The models did not separate the forest
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from the non-forest area well, and they overestimated the volumes close to the forest line
regions [21]. A similar mapping project was conducted using Sentinel-2 data at a resolution
of 10 m; this project had the same challenges with respect to uncertainty assessment [22].

Space-borne lidar, the Geoscience Laser Altimeter System (GLAS), was used to com-
pute two pan-tropical biomass maps by extrapolating the strip-wise Lidar data using optical
and microwave imagery. The maps were produced at resolutions of 1 km and approxi-
mately 0.5 km. The biomass was estimated through the relationship between the forest
height, initially predicted from the GLAS data, and biomass [23,24]. The maps differed
substantially despite similar approaches to data analysis. A fused map was computed
from these two sources using 1 km calibration plots which were based on high-resolution
biomass maps [25].

Projects such as those using GLAS data have been implemented through the use of
Global Ecosystem Dynamics Investigation (GEDI) lidar data. The assessment was based on
a forest height estimation. The level of uncertainty varied between regions and vegetation
types [26,27]; however, saturation at the high levels of biomass typical for passive optical
data [28] was not clear using GEDI observations. The GEDI was an experimental mission
onboard the International Space Station.

A global biomass map was computed using two space-borne radar sensors: the Phased
Array type L-band Synthetic Aperture Radar (PALSAR) instrument onboard the Advanced
Land Observing Satellite (ALOS) satellite and the Advanced Synthetic Aperture Radar
(ASAR) instrument operating at the C-band onboard the Environmental Satellite (Envisat).
The SAR-based estimate started to saturate at approximately 200 metric tons/ha, leading
to an underestimation of the biomass. The study used a forest area map from the Climate
Change Initiative (CCI) to separate forest areas from other land cover types; however, this
led to higher estimates for the total biomass compared to the Forest Resources Assessment
(FRA) of the Food and Agriculture Organization (FAO) of the United Nations [29].

The literature review revealed that an objective assessment of the forest area and forest
attribute maps from satellites is difficult due to the varying definitions of forest, miscella-
neous and poorly representative reference data for uncertainty assessments, varying study
area sizes, and varying spatial resolutions of the imagery. Field reference data from national
forest inventories are available from a few countries only. The best approach to compiling
forest maps with as high a reliability as possible has been to combine different maps in a
justified way. However, in these cases, the true reliability of a map also remains unclear.

In this study, we developed a concept aimed at reducing the uncertainty that was
common in earlier projects estimating forest variables over large areas. Such a concept is
not restricted to any specific type of satellite imagery that is used for wall-to-wall map-
ping and variable prediction. We compared two approaches for estimating the forest area
and forest structural variables over the boreal forest of Fennoscandia and Western Russia:
(1) model-based estimates based on maps developed from Visible Infrared Imaging Ra-
diometer Suite (VIIRS) data from the Suomi National Polar-Orbiting Operational Envi-
ronmental Satellite System Preparatory Project (Suomi NPP) satellite (later VIIRS), and
(2) sample-based estimates using a sample from very high resolution (VHR) images. Ref-
erence data for the VIIRS-based model were available from Finland only. Thus, the key
underlying question of this work is whether a model-based approach that extrapolates over
a large area (outside Finland) is comparable to an independent, sample-based approach
that covers the entire population.

The variables estimated from the VIIRS data were the forest area, growing stock
volume, the height of the dominating tree layer (Lorey’s height), the proportion of conifers
and broadleaved trees from volume, the site fertility class, and the leaf area index (LAI).
The site fertility classification followed the Finnish forest type system, which is based on
the species of undergrowth vegetation [30]. The concept of forest was defined as land
covered by trees with a tree height of more than 5 m at a mature stage and a crown closure
of at least 10%. Forests found in built-up areas were also included in this class when they
fulfilled the conditions.
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The same variables as those from the moderate-resolution data were assessed from
the VHR data except that within the conifers, the proportions of Scots pine and Norway
spruce were additionally separated. Other conifer species and other broadleaved trees were
grouped into two categories, but their proportions were minor. The LAI was not evaluated
from VHR imagery but from the crown cover percentage instead.

We hypothesized that the two independent approaches would aid in understanding
the uncertainties that occur when the forest cover and attribute estimates are based on the
exclusive use of Earth observation data or on the use of reference data that are only available
for a fraction of the area of interest. If the VIIRS-imagery-based estimates fit within the
95% confidence intervals of the variables that were computed from the VHR image sample,
the derived information for the forest variables could be considered realistic. Unlike some
earlier studies [31,32], we did not use the VHR data to calibrate the coarser resolution
results but instead evaluated the differences between the two independent estimations.

2. Materials and Methods
2.1. Study Area and Reference Data

The study area was the European boreal and hemi-boreal forest reaching to the coast
of Norway in the west and to the Ural Mountains in the east (Figure 1). The forest covers
a land area of 2,940,370 km2 or 294,037,000 ha, including inland waters. The dominating
species in the area are Norway spruce (Picea abies Karst.) and Scots pine (Pinus sylvestris L.).
Birches (Betula sp.) are also common and abundant in western Russia. Other broadleaved
species include European Aspen (Populus tremula L.), Alder (Alnus sp.), and Mountain ash
(Sorbus aucuparia L.). A typical growing stock volume of mature forest in the southern part
of the study site is 300–400 m3/ha. In the northern part, which reaches to the arctic tree
line, the growing stock volume declines to a very low value. In Fennoscandia, most of the
forest is intensively managed, while in Russia, the management intensity varies depending
on the geographic region. Forest fires are common in Russia but rare in Fennoscandia [33].
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Figure 1. Study area and locations of the acquired VHR images (newly acquired images or images
used from archive are represented by red and green dots, respectively). Vegetation zones are drawn
in dashed green lines. New acquisitions were from summer 2015; archive scenes were from 2013 and
2014. A common map projection, the European Terrestrial Reference System 1989 (ETRS) Lambert
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azimuthal equal-area projection (LAEA), was selected as the reference coordinate system for the
whole study area. Its center is at 52◦N and 10◦E. The false easting (the easting coordinate of the
projection center) is 4,321,000 m, and the false northing is 3,210,000 m. The EPSG code of the projection
is 3035. This projection is commonly applied in the European Union [34].

The main reference data for the computation of the models for the estimation of
the target variables using moderate-resolution imagery were thematic raster image maps
representing the year 2013, which were available from the Natural Resources Institute
Finland (Luke) [35] (Figure 2). The maps provided values for every target variable except
the LAI. The maps had been computed with the k-NN method using Landsat, Spot, and
other optical data with similar spatial resolutions and national forest inventory field plot
data for reference [36,37]. In addition, a Finnish high-resolution version of the CORINE
2012 map on land cover classification and visual interpretations of Google Earth was used
to support the labeling for the land cover classes. The CORINE high-resolution map was
available at a pixel size of 25 m without generalization to the 25-hectare minimum mapping
unit that is required for the official CORINE [38].
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Figure 2. Example of reference data map from Finland on growing stock volume in the ETRS
LAEA projection (2013), obtained from [35]. The original data are available at https://kartta.
paikkatietoikkuna.fi/?lang=en (accessed on 17 January 2023). Credit: Natural Resources Institute
Finland.

2.2. Suomi NPP VIIRS Data

Moderate-resolution data of the Image or I spectral bands of the VIIRS data were
used for computing the wall-to-wall maps (Table 1). These bands have a spatial resolution
of 375 m at nadir. In total, 238 Sensor Data Record (SDR data) images taken between 31
May and 30 September 2016 were downloaded from the Sodankylä receiving station of the
Finnish Meteorological Institute.

https://kartta.paikkatietoikkuna.fi/?lang=en
https://kartta.paikkatietoikkuna.fi/?lang=en
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Table 1. Wavelength range of VIIRS Image (I) spectral bands.

Band I Center Wavelength
(µm)

Wavelength Range
(µm)

1 0.64 0.6–0.68
2 0.865 0.85–0.88
3 1.61 1.58–1.64

The Suomi-NPP data were available as a one-day running archive in hierarchical
data format (HDF5) version 5. An in-house processing line was developed for image
pre-processing. The processing line consisted of software for reading the input HDF5 files
and the rectification and atmospheric correction of each file. The Simplified Method for
Atmospheric Correction (SMAC) program was applied to all images [39] with a constant
value of 0.02 for the aerosol optical density (AOD). The straightforward application of the
same constant was considered proper for the selected mosaicking method.

The images were rectified to the ETRS LAEA projection at a pixel spacing of 500 m,
using a Gaussian-weighted average with a standard deviation of 250 m. The dataset was
then divided into quarters according to the acquisition time to reduce the risk of possible
seasonal effects on the spectral values (Table 2).

Table 2. VIIRS acquisitions.

Time Range Number of Images

13 May–19 June 58
20 June 20–11 July 53

21 August–11 September 65
12 September–30 September 62

Images from late July and early August were missing due to a hardware failure in the
receiving station. Image mosaic composites for the four time periods were produced using
the maximum normalized difference vegetation index ((NDVI), [I2 − I1]/[I2 + I1]) as the
criterion. A pixel value was selected for the bands from the image that represented the
maximum NDVI value. A visual analysis showed that the latter half of the growing season
was affected by various artefacts for which the autumn aspect in the northern study area
may have been the major reason. Pixel averages of quarters 1 and 2 were computed for the
composite for map production.

2.3. VHR Data
2.3.1. Two-Stage Sampling

The sample-based data were collected using visual interpretation because no such
data were available at a high resolution from the study area. Two-stage, design-based
sampling using VHR imagery was chosen as the method for the provision of an alternative
estimation to the mapping using VIIRS data [40–42]. The images were analyzed visually
by an expert who was not involved in the computation of the VIIRS-based maps, and the
results were not used to support the VIIRS-based mapping.

Area frame sampling was conducted within the study area to select the locations of
the VHR samples. A grid of 10 km × 10 km was defined to cover the study area as the
area frame for the first stage sample. A simple random sample of coordinates in the ETRS
LAEA system, aimed at a selection of 40 VHR images, was conducted within the frame
for the first stage sample. This sample size was considered adequate in the preliminary
calculations to provide satisfactory confidence intervals for the estimated variables.

We attempted to acquire VHR images from all locations in the 10 km × 10 km grid
units that included a sample point. The image database from for the years 2013–2014 from
the Data WareHouse (DWH) of the European Union was checked for the availability of
archived VHR images. New image acquisitions were ordered when no archived data were
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available. Images were accepted between 1.6. and 30.9., i.e., within the growing season.
New acquisitions for the year 2015 were requested if no archive images were available
(Table 3). A possible change in forest area or structure variables between the acquisition of
the VHR and VIIRS data was considered insignificant, considering the proportion of the
changed area in the total area of the images. The image size for the archived images was
5 km × 5 km; however, for the new acquisitions, the minimum available size was always
larger than 25 km2.

Table 3. VHR data. New acquisitions shown in italics. Image pan-chromatic resolution was 0.5 m
and multispectral resolution 2 m. Image# refers to locations shown in Figure 1. WV1 is WorldView-1;
P1A is Pleiadés1A; P1B is Pleiadés1B.

Image# Instrument Date Image# Instrument Date Image# Instrument Date

1 WV1 7 August
2013 15 P1B 18 August

2015 29 P1B 21 August
2015

2 P1B 13 August
2015 16 WV1 2 June 2013 30 P1B 31 July 2015

3 P1A
19

September
2014

17 P1A 25 July 2014 31 P1A 31 July 2015

4 WV1 30 July 2013 18 WV1 28 May
2013 32 P1B 30 June

2015

5 P1B
20

September
2014

19 P1B 20 August
2015 33 WV1

25
September

2014

6 P1B 4 July 2015 20 WV1 31 May
2013 34 P1B 30 June

2015

7 P1A 16 August
2015 21 WV1

18
September

2014
35 P1A 30 June

2015

8 P1A 1 July 2015 22 P1A 6 August
2015 36 P1A 30 June

2015

9 P1A 16 August
2015 23 P1A 20 August

2015 37 P1A 7 August
2015

10 P1A 18 August
2015 24 P1B 29 July 2015 38 P1B 30 June

2015

11 P1A 3 July 2015 25 P1B 21 August
2015 39 P1A 12 August

2015

12 P1A 14 July 2014 26 P1B 24 July 2015 40 P1A 7 August
2015

13 P1B 17 August
2015 27 WV1 8 June 2014 41 WV1 8 August

2014

14 P1B 24 July 2014 28 P1B 21 August
2015 42 P1A 7 August

2015

The sample was supplemented with two additional subjectively chosen images from
Finland. These images were available from the intensive study sites of the project and
represented typical boreal and north boreal forests. Thus, the total number of VHR data
was 42.

All the 42 VHR images were reprojected to the project projection used (ETRS LAEA),
and their pixels were spatially aligned with the VIIRS data. Pan-sharpened natural-color
and color-infrared composites were computed from the VHR images for the visual inter-
pretation.
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In the second stage, a square area of 60 m × 60 m was selected as the population unit
or sample plot for the visual image interpretation. These plots formed a grid within each
VHR image with a mutual distance of 600 m × 600 m (Figure 3).
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In earlier tests, a distance of 800 m between plot centers was considered adequate so as
to not have any major spatial autocorrelations between the plots [41]. A simulation study
of a spatial autocorrelation based on a semi-variogram [43] was performed with earlier
satellite-image-based maps from south and north boreal sites (Hyytiälä and Sodankylä) in
Finland. The autocorrelation was not significant with the 600 m plot distance.

The location of the second-stage grid of plots was random over a finite collection of
grids, meaning that a single grid was selected randomly among the grids that covered
the whole image. A 5 km × 5 km archive image could include 8 × 8 = 64 s-stage sample
plots. A 5 km × 5 km area from the center of a larger image from the new acquisitions was
defined for the sampling. Thus, all 42 images of the random sample included 64 s-stage
units. In a few cases, clouds prevented the selection of plots from a square within a VHR
image. This issue was resolved by extending the sample outside the 5 km × 5 km square
in the larger images from the new acquisition. The total number of the visually assessed
plots was 2690. The second-stage plot size of 3600 m2 made it possible to collect reference
information visually from a relatively large area while minimizing subjectivity and keeping
the interpretation process fast enough [41].

2.3.2. Visual Interpretation

Proportions of forest cover and land cover classes within the 60 m × 60 m plots that
corresponded to the population units were defined and stored (Figure 4). The “Forest”
class in Figure 4 represented a forest area in the computations. It comprised “Tree-Covered
Forest” and “Open Forest”.
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Figure 4. Hierarchy of land cover classes and the variables evaluated for Tree-Covered Forest and
Open Forest.

Open Forest meant temporarily unstocked forest, such as forest regeneration areas
and burned forest areas. It was considered to meet the definition of forest as the canopy
developed. Open Forest, including burned forest areas, was considered to stand out with
a reasonable confidence from land cover classes that represented actual non-forest areas.
However, there can be no absolute certainty that open forest can develop into an area
covered by trees, and after a serious fire, open land can be a permanent result [44]. The
VHR plot and VIIRS image-based estimates were compared for the class “Forest”.

Within the class “Tree-Covered Forest,” the plot crown cover, Lorey’s height, average
growing stock volume, site fertility, and proportions of pine, spruce, and broadleaved trees
from the volume were evaluated and registered. This analysis was considered experimental
because apart from crown cover, a visual interpretation of these variables from satellite
data may be unreliable. Reliable reference field data for crown cover are rarely available
for comparison, making a purely visual interpretation result of this variable also uncertain.
Site fertility was also assessed for the “Open Forest” class. The actual forest area within
a plot was taken into consideration when the plot-based estimate was computed for the
whole VHR image if a plot included forest and other land cover classes.

“Open Peat Land” was part of the “Forestry Land” class but not part of “Forest.” It
was considered a non-forest area in the computations.

A custom pre-processing and analysis workflow was developed to aid in the analysis
of a large quantity of visual sample plots. The pre-processing consisted of extracting image
pyramids of fixed dimensions at different resolutions for each of the 2690 VHR sample
plots. The plots were analyzed from natural-color and color-infrared VHR images. The
color-infrared images particularly supported the assessment of the proportion of broad-
leaved trees. The lengths of tree shadows aided in the estimation of the forest height. A
5 × 5 toggle grid was displayed on the plots to support the assessment of the variables
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within them. Each grid unit corresponded to 4% of the plot area. The plots were assessed
by a professional forester who was familiar with the boreal forest but did not take part in
the satellite image analysis. Training for the visual analysis was organized for the image
interpreter. No reference data were available from sample plot locations. It was important
to collect the VHR image sample using probability sampling, which prevented the use of of
potential existing field references.

The output from the plot interpretation was a tabular file containing information on
the VHR image of the plot, plot coordinates, and the results of the plot assessments.

2.4. Models for Variable Estimation
2.4.1. Land Cover Classification

The study area was divided into three south, middle, and north zones which roughly
followed the hemi-boreal/south boreal, mid-boreal, and north boreal/forest tundra vegeta-
tion zones. Separate models were computed for these zones (Figure 1) [45,46].

A systematic sample of every second pixel of the VIIRS mosaic was selected, and
a k-means clustering attempt for 50 classes was performed on the selected sample. The
spectral mean vector and covariance matrix were computed for each cluster using its
observations. The whole mosaic was then classified into spectral classes by applying the
computed statistics and the maximum likelihood (ML) rule, using the Mahalanobis distance
as the measure. The ML classification was the initial input for the algorithm that predicted
the variables as continuous values.

The classes were labeled as land cover categories with the help of multiple information
references, including the maps from Luke and the high-resolution version of the CORINE
2012 map from Finland. The labeling was supported by a visual analysis of Google Earth
that covered the whole study area. The visual analysis results of the VHR data that were
acquired for this study were not used to define class contents.

The number of spectral classes was eventually 49 because in the in-house implementa-
tion of k-means clustering, a cluster was rejected if the number of observations in a cluster
was less than a defined threshold to which the value of 50 observations was applied. The
clustering-based land cover classification was a preliminary phase for the forest cover
map, which was computed in the same way as the structural variable estimates. The
semi-supervised algorithm is provided in the following subsection.

2.4.2. Structural Variables

The models for the continuous-value structural variables were computed using the
in-house Probability software (Figure 5) [10,41]. The reference data values from the Luke
map with pixel sizes of 25 m × 25 m were sampled (Figure 2), and their averages were
computed for the areas of the 500 m × 500 m VIIRS pixels. Each spectral class of the ML
classification was assigned to a target value for each structural variable. These values
were computed as the medians of the reference data for the growing stock volume, forest
height, and site fertility class and as the averages for the proportions of pine, spruce, and
broadleaved trees to ensure species proportions summing up to 100%.

The rationale of each model was assessed by plotting the structural variable values of
the spectral classes in a coordinate system whose axes were the red-light and near-infrared
reflectances from the VIIRS (Figure 6). In a few cases, the values were manually edited when
the reflectance values and the automatically allocated reference data values of spectrally
similar classes were not consistent. The possibility of manually checking and optionally
editing the model was considered an advantage of the applied method compared to the
commonly used machine learning methods, such as random forest [47,48].
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Figure 6. Growing stock volume (m3/ha) for the spectral classes in the final model plotted on the red
and near-infrared channels. The blue dots indicate the locations of the class means in the spectral
space. Four classes with red channel reflectance > 10%, all with a growing stock volume of zero, were
left out for this illustration. The final estimate was computed as the weighted average of the mean
using the probability algorithm. The class with value −1 represents water surfaces and was ignored
in the computation of the estimates.

Predictions for the structural variables were computed for every pixel of the of the
VIIRS image mosaic as weighted averages of the spectral classes’ target variable values. The
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weight was the membership probability for a spectral class (Equation (1)). All structural
variables were estimated using the same process.

f (x) =
N

∑
c=1

P(c|x) fc , (1)

where f (x) is the target variable value for a spectral vector x, P(c|x) is the probability for
a spectral vector x to belonging to spectral class c, fc is the target variable value for the
spectral class c and N the number of spectral classes. The five closest spectral classes to a
spectral vector were considered in the computations.

The effective leaf area index (LAIe) was computed using the model shown in Equation
(2) [49].

LAIe = 0.27 + 0.25× RSR, (2)

where RSR = I2
I1 ×

I3max−I3
I3max−I3min

, and I1, I2, and I3 are the atmospherically corrected
reflectances of the VIIRS red, near-infrared, and short-wave infrared bands. I3max represents
the reflectance of I3 on open and I3min on closed canopies. These values were selected
manually from the VIIRS mosaic.

The forest cover map was also computed using the Probability method by applying a
forest cover of 0% or 100% to the ML classes. The final forest map was obtained from the
continuous-value prediction by applying a threshold of 50 % to the predicted percentage of
forest cover.

An evaluation of the initial results using the three vegetation zone strata showed that
the model for the southern zone was unfeasible partly due to the scarcity of reference
data. The predictions that were computed using the middle and northern zones provided
seamless estimates at the zone borders in Finland. However, a clearly visible border
appeared in the eastern parts of the boreal region. As the values predicted with the middle
zone model also produced consistent values for the northernmost areas, the model for the
north zone was eventually abandoned, and the model for the middle zone was applied to
the whole VIIRS mosaic.

Water was extracted from the predictions using the water layer of a map by the
University of Maryland [5].

2.5. Computation of Means and Their Confidence Intervals
2.5.1. Means and Confidence Intervals for Target Variables for VHR Image Areas

For each VHR image, the estimates of the expected values and their 95% confidence
intervals for the forest area, site fertility, and continuous variables were computed from the
results of assessing the 60 m × 60 m plots by applying simple random sampling formulas.
Forest proportions within the plots were considered when the results were computed for
the VHR images.

The estimates of the VIIRS map were sampled for the VHR image areas from the
bounding shape (usually a square) that covered the 64 VHR image plots of 60 m × 60 m.
This enabled a comparison of the VHR- and VIIRS-based results for the areas of the 42 VHR
images.

No data were available from the VHR image assessment to compare with the VIIRS-
based LAI. Instead, the correlation of the LAI values from the VIIRS was compared with
the estimated crown cover percentage from the visual VHR image interpretation.

2.5.2. Means and Confidence Intervals for Target Variables for Whole Study Area from
VHR Images

The forest area percentage and its 95% confidence interval for the whole study area
were computed by summing up the forest areas of the individual VHR images using
formulas for a two-stage sampling design [40], equations below:

The sampling fraction in the 1st stage: f1 = n
N

The sampling fraction in the 2nd stage: f2 = m
M , (Note: f2 = m

M ≤
1

100 )
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The value of forest area in the ith VHR image and in the jth plot of that image: yij,
i = 1, . . . , n, j = 1, . . . , m where

N is the size of the sampling frame of all possible VHR images. f1 = n
N ≈ 0 because N is a

very large number due to the large study area.
M is the number of possible plot locations within each VHR image: (M ≥ 6400).
n = 42 is the number of VHR images;
m = 64 is the number of selected plots within a VHR image.

The average forest area of a variable of the ith VHR image in the 2nd stage:
yi =

1
m ∑m

j=1 yij

The average for the whole area:
=
y = 1

nm ∑n
i=1 ∑m

j=1 yij = 1
n ∑n

i=1

(
1
m ∑m

j=1 yij

)
=

1
n

n
∑

i=1
yi.

The variance of the average: v
(
=
y
)
= 1− f1

n s2
1 +

f1(1− f2)
nm s2

2, (note: f1 ≈ 0 ⇒ v
(
=
y
)
= 1

n s2
1 )

where s2
1 = 1

n−1 ∑n
i=1

(
yi −

=
y
)2

and s2
2 = 1

n ∑n
i=1

(
1

m−1 ∑m
j=1

(
yij − yi

)2
)

.
The predictions for forest area and structural variables of the VIIRS map were com-

pared with the estimates from the VHR image interpretation for the whole study area.
The predictions were also compared at the national level with the Finnish and Swedish
statistical data from the national forest inventories. An additional comparison was made
by extracting the areas of the VHR images from the VIIRS maps. This comparison pro-
vided information on the local uncertainty and the extent of averaging in the VIIRS-based
prediction.

3. Results with Accuracy Considerations
3.1. Forest Variables for the Whole Study Area, Finland, and Sweden

The forest area prediction from the VIIRS map (Figure 7) was close to the average
of the estimates from the VHR plots (Table 4). It was 1.2% or 26,463 km2 higher than the
expected forest area estimated from the VHR plots. In the VIIRS classification, an attempt
was made to separate the class Open Forest, i.e., the recent clear cuts or burned forest areas
in Russia, for instance. Part of the open bogs were also included in the Open Forest class
due to the relatively coarse resolution of the VIIRS instrument. The proportion of Open
Forest was 5.4% from the VHR data, which did not include open bogs (Table 5).

Table 4. Forest area and structural variables in VIIRS map and from VHR plots.

Variable VIIRS Map VHR 95% Ci-Low Expected Value VHR 95% Ci-High

Forest area (km2) 2,140,589 1,840,672 2,114,126 2,416,984
Forest proportion (%) * 72.8 62.6 71.9 82.2
Growing stock volume

(1000 m3) * 23,332,420 152,960 217,332 296,081

Growing stock volume
(m3/ha) * 109.0 83.1 102.8 122.5

Forest height (m) 12.5 10.2 11.9 13.6
Conifer proportion (%) 74.9 63.7 68.5 73.4

BL proportion (%) 25.1 26.6 31.5 36.3

* including Forest, Peat forest (in VHR data), and Open Forest.

Similar to forest area, the VIIRS-based forest volume and height also fit into the 95%
confidence interval of the VHR estimation (Figures 8 and 9). The conifer proportion from
VIIRS was higher, and the broadleaved tree proportion was lower than in the VHR image
assessment. They did not fit into the 95% confidence limits.

The VIIRS map was also compared to the national forest inventory statistical data
from Finland (Table 6) and Sweden (Table 7).
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Table 5. Distribution of forest area to sub-classes from VHR plot data and their growing stock volume
values.

Class Forest Proportion
from VHR Plots, (%)

Area, 95% Confidence
Interval (%) V, Expected Value (m3/ha)

V, 95% Confidence
Interval

Mineral Soil Forest 58.3 (48.8, 67.7) 125.3 (101.6, 149.0)
Peat Forest 8.2 (4.6, 11.8) 11.0 (7.1, 14.9)

Mineral Soil + Peat
Forest 66.5 (57.7, 75.2) 111.2 (89.9, 132.4)

Open Forest 5.4 (3.3, 7.5) 0.0 n/a
Mineral Soil + Peat

Forest and Open Forest 71.9 (62.6, 82.2) 102.8 (83.1, 122.5)Remote Sens. 2023, 15, 3029 14 of 27 
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Table 6. VIIRS map totals (mean) and Finnish national forest inventory statistics for the whole
country.

Variable VIIRS Map NFI FI

Forest area (km2) 258,346 226,600 1

Forest proportion (%) 2 77.0 67.0
Growing stock volume (1000 m3) 2,707,466 2,506,000 1

Growing stock volume (m3/ha) 104.8 110.6 1

Conifer proportion (%) 77.5 80.0 3

BL proportion (%) 22.6 20.0 3

1 Including Forest Land—capability 1 m3/ha/year or more, Poorly Productive Forest Land—capability
0.1–1 m3/ha/year. 2 Computed from area of the country including inland waters. 3 Proportions of growing stock
volume. Source for NFI FI data: [50].
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In Finland, the forest area on the VIIRS map was 31,746 km2 or 14.0% higher, corre-
sponding to the 10% difference in the proportion of forest, than the areas of the Forest Land
and Poorly Productive Forest Land classes from the national forest inventory data. The
VIIRS prediction was close to the area of Forestry Land, with an underestimation of 1.3%.
The Forestry Land also included an area of Unproductive Land measuring 32,940 km2 or
9.7% of the area of the country. It comprises mostly open bogs and, among other things,
the top areas of the arctic hills in the northern part of the country.

Table 7. Suomi NPP map totals (mean) and Swedish national forest inventory statistics for the whole
country.

Variable VIIRS Map NFI SE

Forest area (km2) 320,879 301,910 1

Forest proportion (%) 2 71.6 67.0
Growing stock volume (1000 m3) 3,451,799 3,574,000
Growing stock volume (m3/ha) 107.5 118.4 1

Conifer proportion (%) 77.8 3 80.4 3

BL proportion (%) 22.2 3 19.6 3

1 Including Forest land and Other wooded land. 2 Computed from area of the country including inland waters.
3 Proportions of growing stock volume. Source for NFI SE: [51].

The total growing stock volume was overestimated by 8.0% on the VIIRS maps
(Figure 8). The conifer/broadleaved tree proportions were close to the NFI results when
the variables compared were the proportions of tree species in the volume (Table 6). We
considered the proportion of the volume more applicable for the comparison than species
dominance because the dominance concerns the main species only, ignoring mixtures of
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secondary species. The conifer dominance was 89.5% in the Finnish NFI data if the area
was used as the criterion instead of the volume.
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Figure 9. Details of growing stock volume predictions for the areas of three VHR images within the
class Forest. Area size 5 km × 5 km. VHR# refers to Figure 1 and Table 3, GSV means Growing Stock
Volume. (a) boreal forest and agricultural land in Finland, (b) northern boreal forest, oro-arctic land,
and open bog in Kola Peninsula, (c) boreal forest and open bog in Central Russia. Yellow squares
indicate the locations of the 60 m × 60 m plots for visual interpretation.

The VIIRS map matched with the Swedish forest statistics better than with the
Finnish statistics. The forested area was overestimated by 6.3% and the growing stock
volume was underestimated by 3.4%, respectively. As in Finland, the match with the
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conifer/broadleaved tree proportions was good when the proportions from the NFI data
illustrated the proportions of the growing stock volume.

3.2. Comparison of VIIRS Map and VHR Plot Assessment by VHR Image Areas

Figure 10 shows the comparison between the variables estimated from the VHR
plots and the VIIRS-based predictions with each VHR image. The VHR-based estimates
converged well with VIIRS results except that they were lower on average. For the forest
area, images #10, 12, 15, 32, and 36 showed much lower values from the VHR plots than
from the VIIRS map. Image #12 was from a fragmented landscape in Estonia, whereas
all other images were from the northern latitudes, and images #15, 32, and 36 were from
close to the forest line. The VHR image interpreter had considered a large proportion of the
plots on the images to represent shrubland, whereas the same area was largely classified as
forest on the VIIRS map. Image #10 represented a barren northern boreal pine forest with
abundant lichen undergrowth.

Despite the tendency toward an overestimation of the VIIRS map, the binary forest
cover estimations, which were below or above 50% for the areas of VHR images, matched
well because the forest recognition between the VHR assessment and the VIIRS map was
88.1%. This was at the same level as the best results in the global forest cover surveys using
Earth observation [15].

The VIIRS-based growing stock volume predictions varied much less than the VHR
estimates. In 13/42 cases only, the VIIRS prediction fit within the 95% confidence interval
from the VHR analysis. However, the correlation r = 0.7 between the VIIRS and VHR
estimates was reasonably high, and the averages were close to each other.

A comparison of the VIIRS and VHR-based height estimates showed a very similar
pattern to the volume predictions. The VHR confidence interval match with the VIIRS map
was 14/42. The averages were practically the same.

The conifer proportion estimates were higher from the VIIRS, and the broadleaved
tree proportion estimates were lower than from the VHR data, although the average
difference was relatively small. The confidence interval agreements were 17/42 and 15/42,
respectively. The averaging nature of the VIIRS estimation was also apparent in the species
estimation. The agreement for the dominant species was good, 88.1% for the conifer
dominance and 90.5% for the broadleaved trees, respectively, using 50% as the criterion
for species dominance. The agreement was 61.9% if the mixed forest class was included in
addition to the pure conifer or broadleaved forests. A threshold of 75% was applied for the
pure forests when the mixed forest class was included.

The predictions of site fertility class distributions using VIIRS were in line with the
estimates using VHR data when the fertility was grouped into three main classes: herb rich,
mesic, and xeric (Figure 11). The match was also good for many individual VHR image
areas (Figure 12).

The scatterplots between the VHR- and VIIRS-based estimates demonstrate a clear
correlation between them but also the strong averaging in the VIIRS results. The crown
cover assessment from the VHR imagery was compared with the VIIRS-based LAI because
no attempt was made to evaluate the LAI from the VHR data (Figures 13 and 14).



Remote Sens. 2023, 15, 3029 18 of 26

Remote Sens. 2023, 15, 3029 18 of 27 
 

 

on the images to represent shrubland, whereas the same area was largely classified as 
forest on the VIIRS map. Image #10 represented a barren northern boreal pine forest with 
abundant lichen undergrowth. 

  
(a) (b) 

  
(c) (d) 

 
(e) 
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4) and confidence intervals (whiskers) computed from the VHR plot data. Correlation coefficient r 
= 0.86. Average VHR—Average VIIRS = −10.7%. (b) Growing stock volume. Correlation coefficient r 
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Figure 10. (a) Dots: Forest proportions from VIIRS (class “Forest” from VHR plots, see
Figures 1 and 4) and confidence intervals (whiskers) computed from the VHR plot data. Corre-
lation coefficient r = 0.86. Average VHR—Average VIIRS = −10.7%. (b) Growing stock volume.
Correlation coefficient r = 0.70. Average VHR—Average VIIRS = 4.8 m3/ha. (c) Mean height. Average
VHR—Average VIIRS = −0.1 m. (d) Conifer proportion. Correlation coefficient r = 0.69. Average
VHR—Average VIIRS = −8.6%. (e) Broadleaved tree proportion. Correlation coefficient r = 0.73.
Average VHR—Average VIIRS = 6.1%. The VHR image number on the horizontal axis refers to
Figure 1 and Table 3.
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4. Discussion
4.1. General Approach

The two independent estimation procedures, the Probability method using Suomi
NPP VIIRS imagery and the visual interpretation of sample plots from VHR imagery, led
to similar results for the forest variables for the whole study area. The reference data for
the computed VIIRS map were available from raster maps that had been computed via the
interpolation of the NFI field sample plot data from Finland using the k-NN method. The
satellite imagery for these reference maps was obtained from Landsat and other satellites,
providing a similar spatial resolution.

The VHR data were collected using a two-stage random sampling design which can be
considered practically unbiased. The visual interpretation of the plots could have included
a systematic error of an unknown magnitude. However, we considered the estimation of
forest cover from the VHR data to be reliable due to their high spatial resolution. Similar
studies using the visual interpretation of satellite imagery have used lower-resolution
data from Landsat or Sentinel as the primary image source [15,16]. Unlike several other
earlier projects, we applied non-stratified random sampling for the VHR data [52,53]. The
earlier studies focused on one or a few variables, but in our study, for the estimation of five
variables, a simple random sampling was considered more robust. In addition, the whole
study area had a high forest cover proportion and there was no obvious foundation for
defining the strata.

4.2. VIIRS Map and VHR Sample Agreement for Whole Area

The VIIRS predictions for forest proportion and height were very close to the expected
values from the VHR estimation, and the average growing stock volumes were also similar.
The proportion of conifers from the VIIRS map was higher than from the VHR plots, and
the proportion of broadleaved trees was correspondingly lower, being outside the VHR-
data-based 95% confidence limits. The confidence interval was narrowest for the conifers
at 14.2% from the expected value and broadest for the volume at 38.3%.

The broadleaved tree proportion estimate increased from 22.0% for the Nordic coun-
tries to 32.1% for Russia when computed as the average of VHR images from those ar-
eas. In the VIIRS-based estimation, the change was from 20.6% to 24.1%, respectively
(Figures 1 and 9). The VIIRS-based predictions could be too low in Russia because they
were computed using Finnish reference data that reflected the forest management regime in
the Nordic countries. The same increasing trend could be observed for volume. However,
these observations should be considered with caution because the VHR sample size for the
Nordic countries was only twelve, and in Finland, for instance, four of the five images were
sampled from regions with lower growing stock volumes.
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4.3. Agreement with NFI Data and Worldcover

The VIIRS map overestimated the forest area proportion by 10.0% points in Finland
and 4.6% points in Sweden when compared to the NFI data. These differences are clearly
beyond the NFI’s results because their 95% intervals are below ±1% of the expected value
in Finland and ±2% of the expected value in Sweden, respectively [37,51]. The average
growing stock volumes were underestimated, which reduced the overestimation of the
total growing stock volume compared to the error for the forest area in Finland. A major
part of the Finnish landscape is very fragmented, with plenty of small lakes, agricultural
land with small field sizes, and open bogs in the northern part of the country. This may
be a reason for the overestimation of forest area using the VIIRS data with a pixel size of
500 m. In Sweden, the compensation led to an underestimate of the total volume.

The forest area predictions were also compared with the recent Worldcover map [4]. It
showed a clearly lower forest proportion of 64.9% than the VIIRS map. It was also lower
than the expected value from the VHR estimation but fit within its 95% confidence limits.
The Worldcover estimate for forest area was 3.0% points lower compared to the Finnish
NFI data and 3.4% points lower for Sweden. The class for forest in Worldcover is called
Tree Cover; this suggests that it does not consider the temporarily unstocked forest. This
led to the underestimation compared to the VHR data-based result and national forest
inventories.

A comparison of the uncertainty of the VIIRS maps and the maps with space-borne
GLAS lidar data as key information sources should be performed with caution without
comparing the actual maps. However, the large differences between the GLAS-based
mappings in [23,24] already show that their approaches are not error-free. In our study, the
VIIRS maps and VHR assessment showed similar results.

4.4. Agreement at VHR Image Locations

When selected at the locations of the VHR images only, the average of the VIIRS-based
predictions for the structural variables and tree species was very similar to the average
including all the VIIRS pixels. An exception was forest area, for which the VIIRS prediction
average was 10.7% points higher than the VHR estimate, although the estimates were close
to each other when all the VIIRS pixels of the study area were considered.

As expected, the VIIRS-based maps strongly averaged the predictions because a VIIRS
pixel corresponded to an area of 25 ha, while individual trees were visible in the VHR
data. The uncertainty of the VIIRS estimation at the VHR image locations, corresponding
to 10 × 10 VIIRS pixels, can be considered high. The VIIRS maps could show the relative
differences in the structural variables, as demonstrated in the correlation coefficients and
scatterplots with the VHR results, with r = 0.85 for the forest area and from r = 0.69 to
r = 0.74 for the other variables, including the crown cover vs. LAI. Despite the significantly
reduced dynamic range in the VIIRS maps compared with the VHR image assessment, the
averages of the structural variables were close, suggesting a relatively unbiased estimation
at a more local level as well. Using the 10-meter resolution of the Sentinel-2 satellite reduces
the averaging, but saturation can still be observed with increasing volume values above
200 m3/ha [28].

Space-borne lidar data obtained using the GEDI instrument provides a higher dynam-
ical range for height than image data with a larger pixel size and could consequently lead
to better local estimation for growing stock volume and biomass as well; however, the
GEDI-based models have had RMSEs as high as nine meters [26]. Operational space-borne
lidar instruments that would be applicable for forestry are not foreseen in the near future.

The good agreement of the VIIRS and VHR estimates for the main tree species groups,
88.1% for conifers and 90.5% for broadleaved trees at the VHR image areas, suggest that the
mapping of the dominant group is reliable from data of a coarser resolution. The reliability
for the mixed forest class was lower, which has also been reported in earlier studies [16].

The classification of site fertility into three classes matched well for the whole study
area in the VIIRS and VHR results because their class-wise differences were only a few
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percentage points. The classifications also often matched well at the level of single VHR
images. This is an important result because the site fertility class affects forest growth
and can be a key variable in the process models for primary production [54]. Satellite
image-based estimation can be used as input for those models [55].

4.5. Calibration Tests

The interpretation of the forest area from the VHR images can be considered reli-
able. Therefore, two approaches to calibrate the VIIRS estimation were experimentally
tested. One approach was to increase the threshold for the forest area from 50.0% to 60.7%,
corresponding to the average differences between the VIIRS and VHR estimates at the
areas of the VHR images. The other approach was to compute a linear regression model
between the forest areas of the individual VHR images as the predicted variable and the
VIIRS map forest areas from the same locations as the predictors. Both approaches led
to an approximately one-percent reduction in the forest area estimates for Finland and
Sweden. The reduction was considered so low that the results are not presented in this
paper in detail. The calibration was also against the leading principle of this study on the
comparison of independent estimations.

5. Conclusions

Based on the results of this study, we can confirm our hypothesis that using two
independent approaches, i.e., VIIRS-image-based wall-to-wall mapping and two-stage
sampling and visual interpretation from VHR imagery, improves the credibility of remote-
sensing-based surveys. The two estimations probably gave realistic results of the central
forest variables for the European boreal forest from national to continental levels because
they led to similar results. This conclusion can be made despite the fact that no field
reference data were available for most of the area. For the forest area, the VIIRS map and
VHR sample estimates were very close. Additionally, for the height and growing stock
volume, the VIIRS estimates fit within the confidence intervals computed from the VHR
sample. The reference data from Finland may have underestimated the broadleaved tree
proportion in Russia. The relatively good agreement between the VIIRS maps and the
national forest inventory statistical data in Finland and Sweden support the conclusion of
the low bias in our estimation.

According to our results, optical data of a coarser resolution, e.g., 100–500 m, are
applicable for the estimation and mapping of a forest area and central structural variables
at the regional to national levels. A model computed using reference data from a small
part of the area of interest can provide satisfactory predictions for a much larger area with
a similar biome. Our concept could be directly applied also to higher-resolution wall-to-
wall satellite data, such as Sentinel-2 imagery. Part of the VHR image plots could also be
measured on the ground, which would further improve the reliability and reduce bias in
wall-to-wall mapping through calibration. A similar concept has been implemented using
visual analysis of aerial photos and two-phase sampling [56].

An independent parallel estimation using a sample of VHR imagery can provide more
certainty to the wall-to-wall mapping using lower-resolution data when the collection of
field data is not a feasible alternative. The VHR data also make it possible to consider
the temporarily unstocked forest that is often ignored in satellite-image-based mapping,
leading to the underestimation of forest area.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15123029/s1. Figure S1: Suomi NPP VIIRS mosaic (R: band I1;
G: band I2; B: band I3); Figure S2: Forest area (0 = Non-Forest−black, 1 = Forest–white). The forest
map is not relevant outside the study area; Figure S3: Total growing stock volume (m3/ha; black=
0 m3/ha; white = 157 m3/ha), forest mask applied on the study area.; Figure S4: Tree mean height
(dm; black = 0 dm, white = 159 dm), forest mask applied on the study area; Figure S5: Percentage
of coniferous forest (black = low, white = high), forest mask applied on the study area; Figure S6:
Percentage of broadleaved forest (black = low, white = high), forest mask applied on the study area;

https://www.mdpi.com/article/10.3390/rs15123029/s1
https://www.mdpi.com/article/10.3390/rs15123029/s1


Remote Sens. 2023, 15, 3029 24 of 26

Figure S7: Site fertility class (dark grey = 2 herb rich, medium grey = 3 mesic, light grey = 4 xeric),
forest mask applied on the study area; Figure S8: Leaf Area Index (LAIe), forest mask applied on the
study area.
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